Environmental parameters and bacteriological quality of the Perna perna mussel (North East Algerian coast)

Paper Details

Research Paper 01/11/2017
Views (332) Download (12)
current_issue_feature_image
publication_file

Environmental parameters and bacteriological quality of the Perna perna mussel (North East Algerian coast)

Kadri Skander, Belhaoues Saber, Touati Hassen, Boufafa Mouna, Djebbari Nawel et Bensouilah Mourad
Int. J. Biosci.11( 5), 151-165, November 2017.
Certificate: IJB 2017 [Generate Certificate]

Abstract

Coastal waters are exposed to a growing sanitary problem originating from the waste water discharges related to the development of human activities; In light of the increasing use of coastal waters, we focused this study on the assessment of the level of contamination of the Perna perna mussel by bacteria indicating a faecal contamination (using colimetric method) and the effect of temperature, salinity, suspended solids and pH on the accumulation of these bacteria. Our results show that, throughout the year, all sampling mussels harboured bacteria indicating a faecal contamination; However, the high bacterial loads are recorded during the warm months and in the site of Sidi Salem. The strong presence of E. coli is observed in the mussels of Sidi Salem and Rezgui Rachid where contamination affects 100 and 91% respectively of the samples (faecal coliforms represent 50%, 41.6% and 25% respectively in Lahnaya, Cap de Garde and Laouinet). The presence of faecal streptococci is more marked in Sidi Salem where 100% of the samples of mussels contain more than 15 000 SF/100 ml of grindstone compared to only 83% in the other sites. Statistical analysis has clearly demonstrated the effects of the SS, temperature and salinity variables on the dynamics of the bacteria indicative of faecal contamination. The obtained results demonstrate the involvement of anthropogenic activity in the microbial contamination of the waters of the North East Algerian coastline and show that the mussel represents a good model for the evaluation of the bacteriological quality of coastal waters.

VIEWS 15

ACIA. 2004. Manuel des opérations de contrôle de solubilité des mollusques.

Aminot A, Chaussepied M. 1983. Manuel des analyses chimiques en milieu marin. CNEXO, Brest, 395 o.

Bayne BL. 1976. Physiology 1. In: B.L. Bayne (Editor). Marine mussels their ecology and Physiology. Cambridge University Press, New York, p. 121-207.

Benhalima L, Bensouilah M, Ouzrout R. 2015. Antibiotic-Resistant bacteria isolated from waters of Messida coastal canal within an agricultural area North-East Algeria. Advances in Environmental Biology 9(18), 147-156.

Bennani M,  Amarouch H,  Boukanjer A, Nadre H,  Lalaoui M, Allali M, Cohen N. 2012. Influence des facteurs environnementaux sur les charges des bactéries dans le littoral méditerranéen du Maroc. European Journal of Scientific Research 71(1), 24-35.

Bernard FR. 1989. Uptake and elimination of coliforms bacteria by four marine bivalve molluscs. Canadian Journal of Fisheries and Aquatic Sciences 46, 1592- 1599. https://doi.org/10.1139/f89-203

Bordalo AA, Onrassami R, Dechsakulwatana C. 2002. Survival of faecal indicator bacteria in tropical estuarine waters (Bangpakong River, Thailand). Journal of Applied Microbiology 93, 864-871. https://doi.org/10.1046/j.1365-2672.2002.01760.x

Campos CJA, ReeseAS, Kershaw, Lee RJ. 2011. Relationship between the microbial quality of shellfish flesh and seawater in UK harvesting areas Cefas. Report to Defra. Project WT1001-Factors affecting the microbial quality of shellfish.

Campos CJA, Kershaw, Simon R, Lee RJ. 2013. Environmental influences on faecal indicator organisms in coastal waters and their accumulation in bivalveshellfish. Estuaries and Coast 36(4), 834-853. https://doi.org/10.1007/s12237-013-9599-y

Chigbu PS, Gordon, Strange TR. 2005. Fecal coliform bacteria disappearance rates in a north-central Gulf of Mexico estuary Estuarine. Coastal and Shelf Science 65(1-2), 309-318. https://doi.org/10.1016/j.ecss.2005.05.020

Cole HA, Hepper BT. 1954. The use of neutral red solution for the comparative study of filtration rates of lamellibranchs, ICES Journal of Marine Science 20, 197-203. https://doi.org/10.1093/icesjms/20.2.197

Cranford PJ, Ward JE, Shumway SE. 2011. Bivalve filter feeding: variability and limits of the aquaculture biofilter. Shellfish Aquaculture and the Environment, 81-124. https://doi.org/10.1002/9780470960967.ch4

Craig DL, Fallowfield HJ, Cromar NJ. 2004. Use of macrocosms to determine persistence of Escherichia coli in recreational coastal water and sediment and validation with in situ measurements. Journal of Applied Microbiology 96, 922–930. https://doi.org/10.1111/j.1365-2672.2004.02243.x

Derolez V, Soudant D, Fiandrino A, Cesmat L, Serais O. 2013. Impact of weather conditions on Escherichiacoli accumulation in oysters of the Thau lagoon (the Mediterranean, France). Journal of Applied  Microbiology 114(2), 516-525. https://doi.org/10.1111/jam.12040

Dupuy C, Vaquer A, Lam-Höai T, Rougier C, Mazouni N, Lautier J, Collos Y, Le Gall S. 2000. Feeding rate of the oyster Crassostreagigasin a natural planktonic community of the Mediterranean Thau Lagoon. Marine Ecology Progress Series 205, 171-184. https://doi.org/10.3354/meps205171

Efstratiou MA, Mavridou A, Richardson C. 2009. Prediction of Salmonella in seawater by total and faecal coliforms and Enterococci. Marine Pollution Bulletin 58(2), 201-205. https://doi.org/10.1016/j.marpolbul.2008.10.003

Fahim A. 1990. Etude de la pollution bactériologique de la lagune de Oualidia. Thèse de 3ème cycle, Univ. Mohammed BV- Rabat, 219 p.

Garrido-Perez MC, Anfuso E, Acevedo A, Perales-Vargas-Machuca JA. 2008. Microbial indicators of faecal contamination in waters and sediments of beach bathing zones. International Journal of Hygiene and Environmental Health 211, 510-517. https://doi.org/10.1016/j.ijheh.2007.09.010

Geldreich EE. 1976. Fecal coliform and fecal Streptococcus density relationships in waste discharges and receiving wastes. Critical Reviews Environmental Control6, 349-369. https://doi.org/10.1080/10643387609381645

Ghauthier MJ, Clement R. 1979. Etude expérimental du transfert de Vibrio parahaemolyticus (biotype 2) de l’eau et des sédiments aux organismes de chaînes alimentaires benthiques marines. Canadian Journal of Microbiology 25 (4), 499-507. https://doi.org/10.1139/m79-073

Gleeson C, Gray N. 1997. The coliform index and waterborne disease. E & FN Spoon, 194.  https://doi.org/10.4324/9780203476888

Hadas O, Kott Y, Bachrach V, Cavari B. 1983. Ability of Daphnia cell-free extract to damage E coli cells. Applied and Environmental Microbiology 45(4), 1242-1246.

Haure J, Penisson C, Bougrier S, Baud JP. 1998. Influence of temperature on clearance and oxygen consumption rates of the flat oyster Ostrea edulis: determination of allometric coefficients. Aquaculture 169, 211-224. https://doi.org/10.1016/s0044-8486(98)00383-4

Hearel M, Prou J. 1980. Etude de la biomasse bactérienne dans le bassin de Marennes- Oléron. Rapport du comité de l’océanographie biologique, p.10.

Heier BT, Lange H, Hauge K, Hofshagen M. 2014. In A. M. Kirkemo (Ed). Trends and sources of zoonoses and zoonotic agents in humans, foodstuffs, animals and feedingstuffs in 2013, Oslo, Norway: Norwegian Veterinary Institute.

Husson F, Le S, Pagès J. 2014. FactoMineR: Multivariate Exploratory Data Analysis and Data Mining with R. R package version 1.27. http://CRAN.R-project.org/package=FactoMineR.

Jozic S, Solic M, Krstulovic N. 2012. The accumulation of the indicator bacteria Escherichia coli in mussels (Mytilus galloprovincialis) and oysters (Ostrea edulis) under experimental conditions. Acta Adriatica 53(3), 353 – 361.

Kadri S, Dahel A, Djebbari N, Barour C, Bensouilah M. 2015. Environmental parameters influence on the bacteriological water quality of the Algerian North East. Advances in Environmental Biology 9(18) August 2015, 180-189 p.

Kittner K, Riisgård HU. 2005. Effect of temperature on filtration rate in the mussel Mytilus edulis: no evidence for temperature compensation. Marine Ecology Progress Series 305, 147-152. https://doi.org/10.3354/meps305147

Kueh CSW. 1987. Uptake, retention and elimination of enteric bacteria in bivalve molluscs. Asian Marine Biology 4, 113-128.

Laing I. 2004. Filtration of king scallop (Pecten maximus). Aquaculture 240, 369-384. https://doi.org/10.1016/j.aquaculture.2004.02.002

Lee RJ, Silk R. 2013. Sources of variation of Escherichia coli concentrations in bivalve molluscs. Journal of Water and Health 11(1), 78-83. https://doi.org/10.2166/wh.2012.114

Leight AKHood RWood RBrohawn K. 2016. Climate relationships to fecal bacterial densities in Maryland shellfish harvest waters. Water Research Journal vol. 89, 1 February 2016, 270-281. https://doi.org/10.1016/j.watres.2015.11.055

Lunestad BT, Grevskott DH, Svanevik CS, Wester A. 2016. The species accuracy of the Most Probable Number (MPN) European Union reference method for enumeration of Escherichia coli in marine bivalves. Journal of Microbiology Methods, 131, 73-77. https://doi.org/10.1016/j.mimet.2016.10.006

Mignani L, Barbieri E, Marques HLA, Oliviera AJFC. 2013. Coliform density in oyster culture waters and its relationship with environmental factors. Pesquisa Agropecuaria Brasileria 48(8), 833-840. https://doi.org/10.1590/s0100204x2013000800004

Mill A, Schlacher T, Katouli M. 2006. Tidal and longitudinal variation of fecal indicator bacteria in an estuarine creek in south-east Queensland, Australia. Marine Pollution Bulletin 52, 881-891. https://doi.org/10.1016/j.marpolbul.2005.11.018

Moore MN, Depledge MH, Fleming L, Hess P, Lees D, Leonard P, Madsen L, Owen R, Pirlet H, Seys J, Vasconcelos V, Viarengo A. 2013. Marine Board-ESF Working Group on Oceans and Human Health. Oceans and Human Health (OHH): A European perspective from the Marine Board of the European Science Foundation (Marine Board-ESF). Microbial Ecology 65, 889-900. https://doi.org/10.1007/s00248-013-0204-5

Morinigo MA, Cornax R, Munoz MA, Romero P, Borrego JJ. 1990. Relationships between Salmonella spp and indicator microorganisms in polluted natural waters. Water Research 24(1), 117e120. https://doi.org/10.1016/0043-1354(90)90073-f

Noble RT, Lee IM, Schiff KC. 2004. Inactivation of indicator microorganisms from various sources of faecal contamination in seawater and freshwater. Journal of Applied Microbiology 96(3), 464-472. https://doi.org/10.1111/j.1365-2672.2004.02155.x

Oliveira J, Cunha A, Castilho F, Romalde JL, Pereira MJ. 2011. Microbial contamination and purification of bivalve shellfish: Crucial aspects in monitoring and future perspectives – A mini-review. Food Control 22, 805-816. https://doi.org/10.1016/j.foodcont.2010.11.032

Oneil KR, Jones SH, Grimes DJ. 1990. Incidence of Vibrio vulnificus in northern New England water and shellfish. FEMS Microbiology Letters 72, 163- 168. https://doi.org/10.1016/0378-1097(90)90365-w

Plusquellec A, Beucher M, Prieur D, Legal Y. 1990. Contamination of the mussels: Mytilus edulis by enteric bacteria. Journal of Shellfish Research 9, 95-101

Prieur D, Mevel G, Nicolas JL, Plusquellec A, Vigneulle M. 1990. Interaction between bivalve mollusks and bacteria in the marine environment. Oceanography and Marine Biology-Ann. Review 28, 277-352.

Rajesh KV, Mohamed KS, Kri Pa V. 2001. Influence of algal cell concentration, salinity and body size on the filtration and ingestion rates of cultivable Indian bivalves. Indian Journal of Marine Science 30, 87-92.

Roslev P, Bukh A, Iversen L, Sonderbo HL, Iversen N. 2010. Application of mussels as biosamplers for characterization of faecal pollution in coastal recreational waters. Water Science and Technology 62(3), 586-593. https://doi.org/10.2166/wst.2010.910

Schernewski G, Schippmann B, Walczykiewicz T. 2014. Coastal bathing water quality and climate change – a new information and simulation system for new challenges. Ocean & Coastal Management 101, 53e60. https://doi.org/10.1016/j.ocecoaman.2014.01.004

Shulte EH. 1975. Influence of algal concentration and temperature on the filtration rate of Mytilus edulis. Marine Biology 30, 331-341. https://doi.org/10.1007/bf00390638

Šolić M, Krstulović N, Jozić S, Šestanović S, Šantić D. 2007. Effect of temperature on the rate of concentration of faecal coliforms in mussels. Eight International Conference on the Mediterranean Coastal Environment, Alexandria, Egypt, 13-17 November. Proceedings 2, 841-851.

Strohmeier T, Strand O, Alunno-Bruscia M, Duinker A, Cranford PJ. 2012. Variability in particle retention efficiency by the mussel Mytilus edulis. Journal of Experimental Marine Biology and Ecology 412, 96-102. https://doi.org/10.1016/j.jembe.2011.11.006

Tames PML, Dral ADG. 1955. Observations on the straining of suspensions by mussels. Archives Néerlandaises de Zoologie 11, 87-112. https://doi.org/10.1163/036551656×00094

Telailia S. 2014. Etude des oiseaux marins et côtiers du Nord Est algérien : écologie et biologie de la reproduction et impact de l’environnement sur les espèces nicheuses. Thèse de Doctorat ès sciences en sciences agronomiques de l’Université d’El Tarf, 180.

Yukselen MA, Calli B, Gokyay O, Saatchi A. 2003. Inactivation of coliform bacteria in black sea waters due to solar radiation. Environment International 29, 45-50. https://doi.org/10.1016/s0160-4120(02)00144-7

Zegmout M, Basraoui YM, meziane, Chahlaoui M, Demnati AS, Chafi A. 2011. Pollution bactériologique de la zone côtière Saadia/Moulouya (région orientale du Maroc).Revue de microbiologie industrielle et sanitaire et environnementale  5,2, 71-85 p.

Zhang J, Fang J, Liang X, Chin. 2010. Variations in retention efficiency of bivalves to different concentrations and organic content of suspended particles. Journal of Oceanography and Limnology, 28, 10. https://doi.org/10.1007/s00343-010-9227-7