Effect of Mg,Cu,Cd and Mg/Cd, Cu/Cd on stress biomarkers in durum wheat.

Paper Details

Research Paper 01/10/2016
Views (354) Download (7)
current_issue_feature_image
publication_file

Effect of Mg,Cu,Cd and Mg/Cd, Cu/Cd on stress biomarkers in durum wheat.

N. N. Azizi, M. R. Djebar, H. Sbartai
Int. J. Biosci.9( 4), 102-113, October 2016.
Certificate: IJB 2016 [Generate Certificate]

Abstract

This work aims to evaluate the effects of few trace metals (Cd,Cu) and a major element (Mg) and their interactions (Cd/Cu and Cd/Mg) on the growth rate of durum wheat roots (Var. Simeto) and stress biomarkers: glutathione and catalase activity (CAT) in the roots and leaves of durum wheat. A treatment with concentrations (5,20,50μM)  of Cu and Mg  combined or not  to (100 µM) of Cd is applied. The results show an increase growth rate for all Mg concentrations whereas copper has stimulating at low concentrations and inhibiting at high concentrations. As for combinations Mg/Cd and Cu/Cd, inhibit root growth except at [100 µM] of Cd stimulating it during the first 96 hours. However GSH is stimulated at low [Mg/Cd] and  increasing concentrations  of Cu except the lowest dose where no significant increase is observed. GSH levels are stimulated at low concentrations of Cu/Cd and 100µM of Cd in the roots compared to controls. In addition, increasing concentrations of Mg increase the production of GSH, So that an inhibition of GSH for combination treatment Mg/Cd. should be noted that Cu has no effect on GSH except at (50 /100µM). Meanwhile, the catalase activity is stimulated to the different concentrations of Mg and Mg/Cd in the plants. Unlike increasing Cu concentrations where there is a significant decrease in this activity. Similarly, the combined treatment (Cu/Cd) inhibits catalase activity [ 50/100 µM ] in roots and leaves. In the end, Cd induces catalase activity in leaves and inhibits in the roots.

VIEWS 4

Asada K, Takahashi M. 1987. Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ, Osmond CJ, Arntzen CJ, Ed. Photo inhibition: topics in Photosynthesis, Elsevier. Amsterdam, 227. http://dx.doi.org/10.1104/pp.106.082040

Brun C, Guénoche A, Jacq B. 2003. Approach of the functional evolution of duplicated genes in Saccharomyces   cerevisiae using a new classification method based on protein-protein interaction data. Journal  of  Structural and Functional Genomics 3, 213 – 224. http://dx.doi.org/10.1023/A1022694824569

Cakmak I, Kirkby  EA. 2008. Role of magnesium in carbon partitioning and alleviating photooxidative damage. Plant Physiology 133, 692-704. http://dx.doi.org/10.1111/j.1399-3054.2007.01042.x

Cao X, Ma LQ, Tu C. 2004. Antioxidative response to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.). Environmental Pollution 128, 317- 325. http://dx.doi.org/10.1016/j.envpol.2003.09.018

Chiffoleau  J F, Auger  D, Chartier  E, Michel  P, Truquet  I, Ficht  A, Gonzalez  JL, Romana   LA. 2001. Spatiotemporal changes in Cadmium contamination in the Seine estuary (France). Estuaries 24, 1029-1040. http://dx.doi.org/10.2307/1353015

Cho  UH, Seo  NH. 2005. Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Science 168, 113-120. http://dx.doi.org/10.1016/j.plantsci.2004.07.021

Clemens S. 2006. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88, 1707-1719. http://dx.doi.org/10.1016/j.biochi.2006.07.003

Cuypers A, Vangronsveld J, Clijsters H. 2000. Biphasic effect of copper on the ascorbate-glutathione pathway in primary leaves of Phaseolus  vulgaris seedlings during the early stages of metal assimilation. Physiologia Plantarum 110, 512-517. http://dx.doi.org/10.1111/j.13993054.2000.1100413.x

DalCorso  G, Manara  A, Furini  A.  2013.  An overview of heavy metal challenge in plants: from roots to shoots. Metallomics  5, 1117-1132. http://dx.doi.org/10.1039/c3mt00038a

Djebali W, Chaïbi W, Ghorbel MH. 2002. Croissance, activité peroxydasique et modifications structurales et ultrastructurales induites par le cadmium dans la racine de tomate (Lycopersicon esculentum). Canadian Journal of  Botanic  80, 942–953. http://dx.doi.org/10.1139/b02-062

Dos Santos  WD, Ferrarese MD, Finger L, Teixeira CAN, Ferrarese O. 2004. Lignification and related enzymes in Glycine max root growth-inhibition by ferulic acid. Journal of Chemical Ecology 30, 1203-1212.

Doustaly F, Combes F, Fievet JB, Berthet S, Hugouvieux V, Bastien O, Aranjuelo I, Leonhardt N, Rivasseau C, Carriere M, Vavasseur A, Renou JP, Vandenbrouck Y, Bourguignon  J. 2014. Uranium perturbs signaling and iron uptake response in Arabidopsis thaliana roots. Metallomics  6, 809-821. http://dx.doi.org/10.1039/c4mt00005f

Ducruix C, Junot  C, Fievet  JB, Villiers  F, Ezan  E, Bourguignon  J. 2006. New insights into the regulation of phytochelatin biosynthesis in  A. thaliana  cells from metabolite profiling analyses. Biochimie  88, 1733-1742.

Freeman  JL, Persans  MW, Nieman K, Albrecht  C, Peer  W, Pickering  IJ, Salt   DE. 2004. Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell  16, 2176-2191. http://dx.doi.org/10.1105/tpc.104.023036

Gallego SM, Benavide MP, Tomaro ML. 1996. Effects of heavy metal ion excess on sunflower leaves: Evidence for involvement of oxidative stress. Plant Science 121, 151-159. http://dx.doi.org/10.1016/S0168-9452(96)04528-1

Ghnaya T, Nouairi I, Slama I, Messedi D, Grignon C, Abdelly C, Ghorbel MH. 2005. Cadmium effects on growth and mineral nutrition of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum. Journal of Plant Physiology 162, 1133-1140. http://dx.doi.org/10.1016/j.jplph.2004.11.011

Gransee A, Fuhrs  H. 2013. Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant and soil  368,  5-21. http://dx.doi.org/10.1007/s11104-012-1567-y

Grant  CA, Sheppard  SC. 2008. Fertilizer impacts on cadmium availability in agricultural soils and crops, human and ecological risk assessment. International Journal of  Agriculture and Agri-Food Canada, Brandon Research Centre 14, 210-228. http://dx.doi.org/10.1080/10807030801934895

Herbette S, Taconnat  L, Hugouvieux  V, Piette  L, Magniette  MLM, Cuine  P, Auroy  S, Richaud  P, Forestier  C, Bourguignon  J, Renou  JP, Vavasseur  N, Leonhardt  N. 2006. Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie  88, 1751-1765. http://dx.doi.org/10.1016/j.biochi.2006.04.018

Hopkins  WG. 2003. Physiologie végétale. 1st Ed. De Boeck University, 532.

Kabata-Pendias  A, Pendias  H.  2001. Trace elements in soils and plants. 3rd Ed. Boca Raton, Fla. London : CRC Press, 413. 

Kabata Pendias  A.  2011. Trace elements in soils and plants. 4th Ed. CRC Press, 548.

Le Lay P, Isaure MP, Sarry JE, Kuhn L, Fayard B, Le Bail JL, Bastien O, Garin J, Roby C, Bourguignon J. 2006.  Metabolomic, proteomic and biophysical analyses of Arabidopsis thaliana cells exposed to a caesium stress. Influence of potassium supply. Biochimie  88, 1533-1547. http://dx.doi.org/10.1016/j.biochi.2006.03.013

Lin  CC, Chen   LM, Liu  ZH. 2005. Rapid effect of copper on lignin biosynthesis in soybean roots. Plant Science 168,  855-861. http://dx.doi.org/10.1016/j.plantsci.2004.10.023

Loggini  B, Scartazza  A, Brugnoli  E, Navari-Izzo   F. 1999. Antioxidative defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiology 119, 1091-1099. http://www.ncbi.nlm.nih.gov/pubmed/10069848

Marschner H. 2012. Marschner’s mineral nutrition of higher plants, 3rd Ed. London: Academic Press.

McBride  MB. 1995.  Toxic metal accumulation from agricultural use of sludge – Are usepa regulations protective. Journal of Environmental Quality  24, 5-18. http://dx.doi.org/10.2134/jeq1995.00472425002400010002x

Mikkelsen  R.  2010.  Soil and fertilizer magnesium. Better Crops 94, 26-28.

Moulis JM, Bourguignon J, Catty P. 2014. Cadmium, the Royal Society of Chemistry. Chapter  23, 695-746.

Nagalakshmi N, Prasad MNV. 2001. Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Science 160, 291-299. http://www.ncbi.nlm.nih.gov/pubmed/11164601

Ouariti O, Gouia H, Ghorbel MH. 1997. Responses of bean and tomato plants to cadmium: Growth, mineral nutrition, and nitrate reduction. Plant Physiology and Biochemistry  35, 347–354.  http://www.ncbi.nlm.nih.gov/pubmed/9237398

Ovecka M, Takac T. 2014. Managing heavy metal toxicity stress in plants: Biological and biotechnological tools. Biotechnology Advances  32, 73-86. http://dx.doi.org/10.1016/j.biotechadv.2013.11.011

Paschke MW,  Redente EF. 2002. Copper toxicity thresholds for important restoration grass species of the western United States. Environmental Toxicology and Chemistry 21, 2692-2697. http://www.ncbi.nlm.nih.gov/pubmed/12463566

Rengel Z. 1999. Heavy Metals as Essential Nutrients. In: Prasad  M. N. V. Hagemayer J. Eds. Heavy metal stress in plants From molecules to ecosystems. Springer-Verlag. Berlin, 231-251.

Sarry  JE, Kuhn  L, Ducruix  C, Lafaye  A, Junot  C, Hugouvieux  V, Jourdain  A, Bastien  O, Fievet  JB, Vailhen  D, Amekraz B, Moulin C, Ezan E, Garin J, Bourguignon  J. 2006. The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics 6,  2180-2198. http://dx.doi.org/10.1002/pmic.200500543

Sbartai H, Rouabhi R, Sbartai I, Berrebbah H, Djebar MR. 2008. Induction of anti-oxidative enzymes by cadmium stress in tomato (Lycopersicon esculentum).  African Journal of Plant Science  2,  72-76.

Sbartai  H, Djebar  MR, Sbartai  I, Berrabbah 2012. Bioaccumulation of cadmium and zinc in tomato (Lycopersicon esculentum L.). Comptes Rendus Biologies 335, 585-593. http://dx.doi.org/10.1016/j.crvi.2012.08.001

Souguir  D, Goupil  P, Ferjani  E,  Ledoigt  G.  2009. Copper genotoxicity on Vicia  faba and Pisum  sativum root tips. Study and management of soil 16, 339-348.

Torres  MA, Barros  MP, Campos  SC, Pinto  E, Rajamanis  S, Sayre  RT, Colepicolo P. 2008.  Biochemical Biomarkers in algae and marine pollution. Review Ecotoxicology and Environnement Safety  71, 1-15. http://dx.doi.org/10.1016/j.ecoenv.2008.05.009

Verbruggen  N, Hermans  C, Schat  H. 2009. Mechanisms to cope with arsenic or cadmium excess in plants. Current Opinion in Plant Biology 12, 364-372. http://dx.doi.org/10.1016/j.pbi.2009.05.001

Villiers  F, Ducruix  C, Hugouvieux  V, Jarno  N, Ezan E, Garin J, Junot C, Bourguignon  J. 2011. Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches. Proteomics  11, 1650-1663. http://dx.doi.org/10.1002/pmic.201000645

Weckbecker G, Cory JG. 1988. Ribonucletidereductase activity and growth 07 glutathione depleted mouse Leukenaia L. 1210 cells in vitro. Cancer letters 40, 257-264. http://www.ncbi.nlm.nih.gov/pubmed/3289734

White  PJ,  Broadley  MR.  2009. Biofortification of crops with seven mineral elements often lacking in human diets iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist  182, 49–84. http://dx.doi.org/10.1111/j.1469-8137.2008.02738.x

Yanai  J,  Zhao  FJ, McGrath  SP, Kosaki  T.2006. Effect of soil characteristics on Cd uptake by the hyperaccumulator Thlaspi  caerulescens. Environmental Pollution  139, 167-175. http://dx.doi.org/10.1016/j.envpol.2005.03.013

Yruela  I.  2009. Copper in plants: acquisition, transport and interactions. Functional Plant Biology  36, 409-430. http://dx.doi.org/10.1071/FP08288

Zhou WB, Qiu  BS. 2005. Effects of cadmium hyperaccumulation on physiological characteristics of Sedum alfrediiHance (Crassulaceae). Plant Science 169, 737-745. http://dx.doi.org/10.1016/j.plantsci.2005.05.030

Zhu  JK, Meinzer   FC. 1999.  Efficiency of C-4 photosynthesis in Atriplex   lentiformis under salinity stress. Australian  Journal of  Plant Physiology  26, 79-86.

Zorrig   W, Rouached A, Shahzad Z, Abdelly  C, Davidian JC, Berthomieu P. 2010. Identification of three relationships linking cadmium accumulation to cadmium tolerance and zinc and citrate accumulation in lettuce. Journal of Plant Physiology 167, 1239-1247. http://dx.doi.org/10.1016/j.jplph.2010.04.012