Cell free DNA – A novel biomarker in the field of oncology: A comparative account in the cancer patients and healthy residents of Karachi city

Paper Details

Research Paper 01/10/2016
Views (566)
current_issue_feature_image
publication_file

Cell free DNA – A novel biomarker in the field of oncology: A comparative account in the cancer patients and healthy residents of Karachi city

Mohammad Attaullah, Masarrat J. Yousuf, Saifullah Afridi, Islam Dad, Muhammad Amin, Syed Ishtiaq Anjum, Rooh Ullah
Int. J. Biosci. 9(4), 356-364, October 2016.
Copyright Statement: Copyright 2016; The Author(s).
License: CC BY-NC 4.0

Abstract

The present study was carried out to ascertain the levels of cell free DNA (cf-DNA) in the serum samples of diagnosed cancer patients having various malignancies and healthy residents of Karachi City. Collection of blood samples was carried out with informed consent from diagnosed cancer patients and healthy human subjects at various hospitals of Karachi City. Serum was isolated and analyzed for cf-DNA with genomic DNA isolation accompanied with Isoamyl-Phenol-Chloroform purification. Positive percentage of cf-DNA was found to be 36.84% (14/38 samples) in the healthy subjects and 56.45% (35/62 samples) in the cancer patients. The detected mean level of cf-DNA in the control and cancer group was found to be 1758.8ng/mL and 5584.27ng/µl respectively. Significantly elevated levels of cf-DNA were detected in the cancer cases compared with the healthy subjects. Cancer cases of the oral cavity and pharynx and breast cancer generally were having higher mean cf-DNA concentrations followed by blood cancer cases. Higher serum cf-DNA levels in the cancer cases compared with the healthy subjects is associated with the level of damage caused to nuclear DNA in various malignancies. A simple cost-effective blood test for the application of novel cancer biomarker (cf-DNA) will assist clinicians to implement therapeutics in an efficient and effective way for the diagnosis, staging and prognosis of various cancers during cancer management.

Anile M, Chiappetta C, Diso D, Liparulo V, Leopizzi M, Rocca CD, Venuta F. 2014. Influence of lung parenchyma surgical manipulation on circulating free DNA. Journal of Circulating Biomarkers 3, 1-5.

Anker P, Mulcahy H, Chen X, Stroun M. 1999. Detection of circulating tumour DNA in the blood (Plasma/serum) of cancer patients. Cancer and Metastasis Reviews 18, 65-73.

Ausubel F, Brent R, Kingston R, Moore D, Seidman JG, Smith J, Struhl K. 1995. Short Pro-tocols in Molecular Biology, 3rd Ed. Unit 2.1, page 2-3.

Breitbach S, Tug S, Simon P. 2012. Circulating cell-free DNA: An upcoming molecular marker in exercise physiology. Sports Medicine 42, 565-586.

Cabral REC, Neto JBC, Carvalho MGC. 2010. Circulating DNA as a biomarker for early detection of cancer. A Brief update with an Emphasis on Lung Cancer. The Open Lung Cancer Journal 3, 38-44.

Catarino R, Coelho A, Medeiros R. 2012. Circulating DNA and NSCLC: old findings with new perspectives. Journal of Thoracic Disease 4, 442-443.

Ellinger J, Bastian PJ. 2010. Cell-Free DNA: A novel biomarker for patients with prostate cancer. The Open Prostate Cancer Journal 3, 57-62.

Elshimali YI, Khaddour H, Sarkissyan M, Wu Y, Vadgama JV. 2013. The clinical utilization of circulating cell free DNA (CCFDNA) in blood of cancer patients. International Journal of Molecular Sciences 14, 18925-18958.

Gonzalez-Masia JA, Garcia-Olmo D, Garcia-Olmo DC. 2013. Circulating nucleic acids in plasma and serum: applications in oncology. Oncology Targets and Therapy 6, 819-832.

Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch R, Knippers R. 2001. DNA fragments in the blood plasma of cancer patients: Quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Research 61, 1659-1665.

Lee TH, Montalvo L, Chrebtow V, Busch MP. 2001. Quantitation of genomic DNA in plasma and serum samples: Higher concentrations of genomic DNA found in serum than in plasma. Transfusion 41, 276-282.

Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. 1977. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Research 37, 646-50.

Nagata S, Hanayama R, Kawane K. 2010. Autoimmunity and the clearance of dead cells. Cell 140, 619-630.

Nalini R, Delphine Silvia CRW, Uthappa S. 2008. Utility of blood DNA levels in diagnosis of breast cancer. Journal of Cancer Research and Therapeutics 4, 57-59.

Park JL, Kim HJ, Choi BY, Lee HC, Jang HR, Song KS et al. 2012. Quantitative analysis of cell-free DNA in the plasma of gastric cancer patients. Oncology Letters 3, 921-926.

Rodrigo MC, Martin DS, Redetzke RA, Eyster EM. 2002. A method for the extraction of high-quality RNA and protein from single small samples of arteries and veins preserved in RNA later. Journal of Pharmacological and Toxicological Methods 47, 87-92.

Schwarzenbach H, Hoon DS, Pantel K. 2011. Cell-free nucleic acids as biomarkers in cancer patients. Nature Reviews Cancer 11, 426-437.

Sorenson GD, Pribish DM, Valone FH, Memoli VA, Bzik DJ, Yao SL. 1994. Soluble normal and mutated DNA sequences from single-copy genes in human blood. Cancer Epidemiology Biomarkers and Prevention 3, 67-71.

Tabak B, O’Day SJ, Hoon DSB. 2004. Quantification of circulating DNA in the plasma and serum of cancer patients. Annals of New York Academy of Sciences 1022, 17-24.

Tong Y, Dennis Lo YM. 2005. Diagnostic developments involving cell-free (circulating) nucleic acids. Clinica Chimica Acta 363, 187-196.

Vasioukhin V, Anker P, Maurice P, Lyautey J, Lederrey C, Stroun M. 1994. Point mutations of the N-ras gene in the blood plasma DNA of patients with myelodysplastic syndrome or acute myelogenous leukaemia. British Journal of Haematology 86, 774-9.

Wagner J. 2012. Free DNA–new potential analyte in clinical laboratory diagnostics? Biochemical Medicine (Zagreb) 22, 24-38.

Ziegler A, Zangemeister-Wittke U, Stahel RA. 2002. Circulating DNA: a new diagnostic gold mine. Cancer Treatment and Reviews 28, 255-271.

Related Articles

Assessment of genetic parameters and yield trait stability in sweet sorghum genotypes through AMMI and GGE biplot approaches

A. H. Inuwa, H. A. Ajeigbe, Y. Mustapha, B. S. Aliyu, I. I. Angarawai, Int. J. Biosci. 27(4), 69-81, October 2025.

Flammability of tropical grasses: Towards a functional ecology of fire in savannas

Kouamé Fulgence Koffi, Yao Anicet Gervais Kouamé, Tionhonkélé Drissa Soro, Koffi Prosper Kpangba, Int. J. Biosci. 27(4), 57-68, October 2025.

Sensory qualities, proximate composition and microbial activity of cacao pod-based food products

John Carlo L. Banan, Aiza T. Ramos, Int. J. Biosci. 27(4), 48-56, October 2025.

Perception of oil palm producers on infestations of Trabanta rufisquamata defoliating caterpillars in palm groves in southern Benin

Abilou Oloyiwola Olorounto, Hervé Nonwegnon Sayimi Aholoukpe, Micheline Vignon Hintenou, Houngan Judicaël Yelian Yan, Ladekpo Sylvain Ogoudjobi, Antoine Badou, Aimé H. Bokonon-Ganta, Int. J. Biosci. 27(4), 34-47, October 2025.

Fire spread control for management purpose: Fuel moisture critical threshold in annually burned dry savanna of west Africa

Tionhonkélé Drissa Soro, Jean-Luc Kouassi, Bareremna Afelu, Amara Ouattara, Moussa Koné, Int. J. Biosci. 27(4), 19-33, October 2025.

Renal protection by Okra (Abelmoschus esculentus) seed oil against cadmium toxicity in male rats

Amani A. R. Filimban, Nada O. Batais, Int. J. Biosci. 27(4), 8-18, October 2025.

Effects of an organic amendment based on biodigester effluent on cotton yield parameters in the Cascades region of Burkina Faso

F. Y. Lankoande, A. Bamogo, M. Traore, S. Ouedraogo, Int. J. Biosci. 27(4), 1-7, October 2025.

Organic feed additive Alpha-Bio+ as an alternative to chemical antibiotics: Effect on zootechnical performance and coccidial burden in laying hens Lohmann Brown

Coulibaly Assetou Ya, Yapi Jean Noel, Kadjo Vincent, Ouattara N’Golo , Yao Kouakou, Int. J. Biosci. 27(3), 221-228, September 2025.