The dynamics of phytoplanktonic community in relation to water quality regimes, In flood plain of Bangkau Swampy lake, South Kalimantan, Indonesia

Paper Details

Research Paper 01/11/2016
Views (450) Download (16)
current_issue_feature_image
publication_file

The dynamics of phytoplanktonic community in relation to water quality regimes, In flood plain of Bangkau Swampy lake, South Kalimantan, Indonesia

Mijani Rahman, Herliwati Herdinansyah
Int. J. Biosci.9( 5), 66-77, November 2016.
Certificate: IJB 2016 [Generate Certificate]

Abstract

This research aims to investigate the the effect of the dynamic of water physico-chemical changes to structural community of phytoplantonic creatures in swampy flood plain. Water samples were taken in May to November 2015 in Bangkau swampy flood plain. Multivariate analysis non-metric multidimension scaling (NMDS) was used for statistically analysis the relationship of biotic and water physico-chemical data. Oscillatoria, Gonatozygon and Thallasiossira are three of twenty species, which they always present in each observations. Abundance of phytoplanktonic ranges between 148 to 23,740 cell L-1. The presence of phytoplanktonic mainly abundance in November (16 to 20 genera) and very rare in May. Identified 20 genera, there 6 genera have a correlation to the dynamic of water quality parameters. Binuclearia and Cryptomonas  have positiey correlated to parameters of depth, SO4 and PO4. Both Binuclearia and Cryptomonas were present dominantly in May and June. In the other hand, Oscillatoria (Cyanophyta), Sphaeroplea (Chlorophyta), Diatoma and Nitszchia (Chrysophyta) shows negatively correlated to the dinamic  water quality.

VIEWS 19

Abdullah-Al Mamun. 2010. Understanding the value of local ecological knowledge and practices for habitat restoration in human-altered floodplain systems: A Case from Bangladesh. Environmental Management 45, 922-938. http://dx.doi.org/10.1007/s00267-010-9464-8

Agostinho AA, Bonecker CC, Gomes LC. 2009. Effects of water quantity on connectivity: the case of the upper Paraná river floodplain. Ecohydrology and Hydrobiology 9, 99-113. http://dx.doi.org/10.2478/v10104-009-0040-x

Alam RQ, Benson BC, Visser JM, Gang DD. 2016. Response of estuarine phytoplankton to nutrient and spatio-temporal pattern of physico-chemical water quality parameters in Little Vermilion Bay, Louisiana. Ecological Informatics 32, 79-90. http://dx.doi.org/10.1016/j.ecoinf.2016.01.003

APHA.  1998.  Standard  methods  for  the  examination  of  water  and  wastewater.  In: 19th  American  Public  Health  Association,  Washington.

Cardoso SJ, Roland F, Loverde-Oliveira SM, Huszar VLM. 2012. Phytoplankton  abundance, biomass and diversity within and between Pantanalwetland habitats.  Limnologica 42, 235-241. http://dx.doi.org/10.1016/j.limno.2012.01.002

Devlin MJ, Barry J, Mills DK, Gowen RJ, Foden J, Sivyer D, Tett P. 2008. Relationships between suspended particulate material, light attenuation and secchi depth in UK Marine Waters. Estuarine, Coastal and Shelf Science 79, 429-439. http://dx.doi.org/10.1016/j.ecss.2008.04.024

Edmonson WT. 1964. Fresh Water Biology.Buttherworth, London.

Entwisle TJ, Sonneman JA, Lewis SH.  1997.  Freshwater Algae in Australia. A guide to conspicuous genera. Sainty and Associates Pty Ltd, NSW, Australia.

Guiry MD. 2014. In: Guiry, M.D., Guiry, G.M. (Eds.), AlgaeBase. World-wide Electronic Publication, National University of Ireland, Galway. http://www.algaebase.org (accessed

Junk W, Bayley PB, Sparks RE. 1989. The flood pulse concept in river-floodplain systems. in D.P. Dodge, ed. Proceedings of the International Large River Symposium (LARS). Canadian Special Publication of Fisheries and .Aquatic Sciences 106, 110-127. http://www.dfo-mpo.gc.ca/Library/111846.pdf

Junk WJ, Wantzen KM. 2004. The flood pulse concept: new aspects, approaches, and applicationsan update. In: Welcomme, R.L., Petr, T. (Eds.), Proceedings of the Second International Symposium on the Management of Large Rivers for Fisheries, Phnom Penh, Cambodia, 11–14 February 2003. Food and Agriculture Organization and Mekong River Commission, FAO Regional Office for Asia and the Pacific, Bangkok.

Kozak A, Goldyn R, Dondajewska R.  2015. Phytoplankton Composition and Abundance in Restored Maltański Reservoir under the Influence of Physico-Chemical Variables and Zooplankton Grazing Pressure. PLoS ONE 10, e0124738. http://dx.doi.org/10.1371/journal.pone.0124738

Liu C, Liu L, Shen H.  2010.  Seasonal variations of phytoplankton community structure in relation to physico-chemical factors in Lake Baiyangdian, China. International Society for Environmental Information Sciences 2010 Annual Conference (ISEIS). Procedia Environmental Sciences 2, 1622-1631. http://dx.doi.org/10.1016/j.proenv.2010.10.173

Lowe-McConnel RH. 1987.  Ecological Studies in Tropical Fish Communities.  Cambridge University Press.  London.

Maguran AE.  2004.  Measuring biological diversity. Blackwell Publishing. Oxford.

Mihaljević M, Špoljarić D,  Stević F, Cvijanović V, Kutuzovi´c BH.  2010. The influence of extreme floods from the River Danube in 2006 on phytoplankton communities in a floodplain lake: Shift to a clear state. Limnogica 40, 260-268. http://dx.doi.org/10.1016/j.limno.2009.09.001

Mihaljević M, Špoljarić D, Stević F, Pfeiffer TŽ. 2013. Assessment of flood-induced changes of phytoplankton along a river–floodplain system using the morpho-functional approach. Environmental Monitoring Assessment 185, 8601-8619. http://dx.doi.org/10.1007/s10661-013-3198-z

Nabout JC, Noguera IS,  Oliveira LG, Morais RR. 2007. Phytoplankton diversity (alpha, beta, and gamma) from the Araguaia River tropical floodplain lakes (central Brazil). Hydrobiologia 557, 455-461. http://dx.doi.org/10.1007/s10750-006-0393-8

Okogwu OI. 2010. Seasonal variations of species composition and abundance of zooplankton in Ehoma Lake, a floodplain lake in Nigeria. International Journal of Tropical Biology. 58(1), 171-182.

Prescott GW. 1970.  How to know the Freshwater Algae.  WM. C. Brown Comp. Pub, Dubuque, Iowa, USA.

Peerapornpisal Y. 2005. Freshwater Algae in northern Thailand. The biodiversity research and training Program (BRT), Bangkok, Thailand.

R Development Core Team (RDCT). 2008.  R: a language and environment for statistical computing.  R Foundation for Statistical Computing, Viena, Austria. http://www.R-project.org

Schagerl M, Drozdowski I, Angeler DG, Hein T, Preiner S. 2009. Water age – A major factor controlling phytoplankton community structure in a reconnected dynamic floodplain (Danube, Regelsbrunn, Austria). Journal of Limnology 68,  274-287.

Semeniuk CA. 2011. A comprehensive classification of inland wetlands of Western Australia using the geomorphic-hydrologic approach. Journal of the Royal Society of Western Australia 94, 449-464. www.rswa.org.au/publications/Journal/94(3)/SemeniukSemeniukpp.449-464.pdf

SERM. 2002.  Simple estuary response model, CSIRO, Australia. Accessed Jan. 14st. 2010. www.per.marine.csiro.au/serm/indicators/secchi_depth.html.

Srifa A, Philip EJ, Hendrickson J. 2016. How many seasons are there in a sub-tropical lake? A multivariate statistical approach to determine seasonality and its  application to phytoplankton  dynamics. Limnogica 60, 39-50. http://dx.doi.org/10.1016/j.limno.2016.05.011

Tockner K, Stanford JA. 2002. Riverine flood plains: present state and future trends. Environmental Conservation 29, 308-330. http://dx.doi.org/10.1017/S037689290200022X

Yu Q, Chen Y, Liu Z, Zhu D, Wang H. 2016. Longitudinal variations of phytoplankton compositions in lake-to-river systems. Limnologica. In Press. http://dx.doi.org/10.1016/j.limno.2016.02.007

Wehr JD, Sheath RG. 2003. Introduction to Freshwater Algae. In Wehr, JD and Sheath G (ed.). Freshwater Algae of North America, Ecology and classification.Academic Press, San Diego, California, USA.