Purification and characterization of amyloglucosidase produced by a mutant strain of Aspergillus Niger
Paper Details
Purification and characterization of amyloglucosidase produced by a mutant strain of Aspergillus Niger
Abstract
Amyloglucosidases, are the enzymes which releases glucose by hydrolyzing starch and oligosachharides as it hydrolyzes µ-1, 4 and µ-1, 6 linkages of the saccharides formed by the action of other amylases on starch and has great importance in the starch industries. The present study is concerned with the partial purification of amyloglucosidase produced by the mutant strain of Aspergillusniger using ammonium sulphate precipitation method and characterization of the enzyme. The maximum activity of amyloglucosidase was achieved after 60 min of incubation when maintained at pH 4.75 and temperature of 60oC with 5% starch concentration.
Arassaratnam KT, Vasanthy Z, Muragapoopthy, Thiagarajah JK, Balasubramanium R, Kandiah S. 1994. Effect of pH on preparation and performance of physically immobilized amyloglucosidase on DEAE cellulose. Starch/Staerke Eng 46(4), 1467-1469.
Arassaratnam V, Mylvagunam K, Balasubramanian T. 1997. Paddy husk support and rice bran for production of glucoamylase by Aspergillus niger. J. Food Sci. Technol 32(4), 299-304.
Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry 72, 248-254.
Costa JAV, Colla E, Magagnin G, Santos LO, Vendruscolo M, Bertolin TE. 2007. Simultaneous amyloglucosidase and exopolygalacturonase production by Aspergillus niger using solid state fermentation. Braz Arch Boil Technol 50(5), www.dx.doi.org/10.1590/S151689132007000500003
Deutscher MP. 1990. Guide to protein purification. Methods in enzymology 182, 285-295.
Dilera G, Chevalliera S, Pöhlmanna I, Guyona C, Guillouxa M, Le-Baila A. 2015. .Assessment of amyloglucosidase activity during production and storage of laminated pie dough. Impact on raw dough properties and sweetness after baking J of Cereal Science 61, 63–70.
Fogarty WM, Benson CP. 1983. Purification and properties of a thermophilicamyloglucosidase from Aspergillus niger. J Appl Microbiol Biotechnol 18(5), 271-278.
Ford C. 1999. Improving operating performance of glucoamylase by mutagenesis. Curr Opin Biotechnol 10, 352–357.
Haq I, Ashraf H, Omar S, Qadeer MA. 2002. Biosynthesis of amyloglucosidase by Aspergillus niger using wheat bran as substrate. Pak. J of Biol Sci 5(9), 962-964.
Hyun HH, Zeikas JC. 1985. General biochemical characterization of Thermostable pollulanase and glucoamylase from Clostridium thermohydrosufuricum. Appl Environ Microbiol 49(5), 1168-1173.
Kelly CT, Reilly FO, Fogarty WM. 1983. Extracellular alpha-glucosidase of an alkalophilic microorganism, Bacillus spp ATCC 21591. Microb Lett 20, 55-59.
Khalaj V, Brookman JL, Robson GD. 2001. A study of the protein secretary pathway of Aspergillus niger using a glucoamylase-GFP Fusion protein. Fungal Genet. Biol 32(1), 55-65.
Laemmli UK. 1970. Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227, 680-685.
Malik S, Iftikhar T, Haq IU. 2011. Enhanced amyloglucosidase biosynthesis through mutagenesis using Aspergillus niger. Pak J. Bot 43(1), 111-119.
Manera AP, Kamimura ES, Brites LM, Khalil SJ. 2008. Adsorption of Amyloglucosidase from Aspergillus niger NRRL 3122 using Ion Exchange Resin Braz Arch Of Biol Technol 51(5), 1015- 1024.
Omemu AM, Akpan I, Bankole MO, Teniola OD. 2005. Hydrolysis of raw tuber starches by amylase of Aspergillus niger AM07 isolated from the soil. Afric J of Biotechnol 4(1), 19-25.
Omemu AM, Akpan I, Bankole MO. 2008. Purification and characterization of extracellular Amyloglucosidase from Aspergillusniger CA-19 by solid state fermentation. Res. J. Microbiol 3(3), 129-135.
Pandey, Radhakrishan S. 1993. The production of glucoamylase by Aspergillus niger NCIM 1245. Process Biochem 8, 305-309.
Pavezzi FC, Gomes E, Silva R. 2008. Production and characterization of glucoamylase from fungus Aspergillus awamori expressed in yeast Saccharomyces cerevisiae using different carbon sources. Braz J. Microbiol 39(1), www.dx.doi.org/10.1590/S151783822008000100024
Polakovic M, Bryjak J. 2004. Modelling of potato starch saccharification by an Aspergillus niger glucoamylase. J. Biochem Eng 18, 57–64.
Preda G, Boeriu C, Deretey E, Peter F. 1996. Characterization of an amyloglucosidase by Aspergillusniger 1C strain. Ser Chin Ind Ing Mediului 41(12), 35-42.
Reilly PJ. 1999. Protein engineering of glucoamylase to improve industrial performance – a review. Starch/Starke 51, 269–274.
Roe S. 2001. Protein purification techniques. 2nd edition. Oxford University press. 134-142.
Singh S. 2007. A text book of Enzymes. CBI Publishers. 1, 15-33.
Selva KP, Ashakumary L, Helen A, Pandey A. 1996. Purification and characterization of glucoamylase produced by Aspergillusniger in solid state fermentation. Appl Microbiol Lett 23(6), 403-408.
Spier MR, Woiciechowski AL, Vandenberghe LPS, Soccol CR. 2006. Production and characterization of Amylases by Aspergillus niger under solid state fermentation using Agro industrials products. International Journal of Food Engeenering 2(3), 1-20.
Tsekovak K, Vicheva A, Tzekova A. 1999. Enhanced thermostability of glucoamylase by Aspergillus niger. Microbiologia 50(7-8), 181-185.
Shazia Malik, IkramulHaq, Tehreema Iftikhar (2016), Purification and characterization of amyloglucosidase produced by a mutant strain of Aspergillus Niger; IJB, V9, N5, November, P108-115
https://innspub.net/purification-and-characterization-of-amyloglucosidase-produced-by-a-mutant-strain-of-aspergillus-niger/
Copyright © 2016
By Authors and International
Network for Natural Sciences
(INNSPUB) https://innspub.net
This article is published under the terms of the
Creative Commons Attribution License 4.0