Applied systems approach to wind erosion control engineering model

Paper Details

Short Communications 01/12/2011
Views (622)
current_issue_feature_image
publication_file

Applied systems approach to wind erosion control engineering model

Paul C Njoku, PI Anyanwu, Archna Swati Njoku
J. Biodiv. & Environ. Sci. 1(6), 179-183, December 2011.
Copyright Statement: Copyright 2011; The Author(s).
License: CC BY-NC 4.0

Abstract

This study deals with the supplied systems approach to wind erosion and control engineering. Many humid regions of the world are damaged by wind erosion, wind distribution with height; wind erosion types, mechanics and control engineering, estimation of wind have been treated.

Bagnold RA. 1941. The Physics of Blown Sand and Desert Dunes. Methuen, London.

Chepil WS. 1944. Utilization of Crop Residues for Wind Erosion Control. Sci. Arg. 24, 307 – 319.

Chepil WS, Milne RA. 1941. Wind Erosion of Soil in Relation to Roughness of Surface. Soil Sci. 52, 417-413.

Chepil WS, Siddoway FH, Armbrust DV. 1962. Climate Factor for Estimating Wind Erodibility to Farm Fields. J. Soil Water Cons. 17(4), 162-165.

Engelhorn CL, Zigg AW, Woodruff NP. 1952. The Effects of Plant Residue Cover and Clod Structure on Soil Losses by Wind. Soil Sci. Soc. Am. Proc. 16, 29-33.

Hagen LJ. 1991 A Wind Erosion Prediction System to meet User Needs” J. Soil Water Cons. 46(2), 106-111.

Hallsted AL. Mathews OR. 1936. Soil Moisture and Winter Wheat with suggestions on Aboundonment. Kansas Arg. Expt. Sta. Bull. 273. Kansas state University, Manhattan.

Related Articles

Cytogenetic and pathological investigations in maize × teosinte hybrids: Chromosome behaviour, spore identification, and inheritance of maydis leaf blight resistance

Krishan Pal, Ravi Kishan Soni, Devraj, Rohit Kumar Tiwari, Ram Avtar, J. Biodiv. & Environ. Sci. 27(2), 70-76, August 2025.

Conservation and trade dynamics of non-timber forest products in local markets in south western Cameroon

Kato Samuel Namuene, Mojoko Fiona Mbella, Godswill Ntsomboh-Ntsefong, Eunice Waki, Hudjicarel Kiekeh, J. Biodiv. & Environ. Sci. 27(2), 58-69, August 2025.

Overemphasis on blue carbon leads to biodiversity loss: A case study on subsidence coastal wetlands in southwest Taiwan

Yih-Tsong Ueng, Feng-Jiau Lin, Ya-Wen Hsiao, Perng-Sheng Chen, Hsiao-Yun Chang, J. Biodiv. & Environ. Sci. 27(2), 46-57, August 2025.

An assessment of the current scenario of biodiversity in Ghana in the context of climate change

Patrick Aaniamenga Bowan, Francis Tuuli Gamuo Junior, J. Biodiv. & Environ. Sci. 27(2), 35-45, August 2025.

Entomofaunal diversity in cowpea [Vigna unguiculata (L.) Walp.] cultivation systems within the cotton-growing zone of central Benin

Lionel Zadji, Roland Bocco, Mohamed Yaya, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, J. Biodiv. & Environ. Sci. 27(2), 21-34, August 2025.

Biogenic fabrication of biochar-functionalized iron oxide nanoparticles using Miscanthus sinensis for oxytetracycline removal and toxicological assessment

Meenakshi Sundaram Sharmila, Gurusamy, Annadurai, J. Biodiv. & Environ. Sci. 27(2), 10-20, August 2025.

Bacteriological analysis of selected fishes sold in wet markets in Tuguegarao city, Cagayan, Philippines

Lara Melissa G. Luis, Jay Andrea Vea D. Israel, Dorina D. Sabatin, Gina M. Zamora, Julius T. Capili, J. Biodiv. & Environ. Sci. 27(2), 1-9, August 2025.

Effect of different substrates on the domestication of Saba comorensis (Bojer) Pichon (Apocynaceae), a spontaneous plant used in agroforestry system

Claude Bernard Aké*1, Bi Irié Honoré Ta2, Adjo Annie Yvette Assalé1, Yao Sadaiou Sabas Barima1, J. Biodiv. & Environ. Sci. 27(1), 90-96, July 2025.