Evaluation of the impact of climate on cultivation of spring canola in Hamedan region

Paper Details

Research Paper 01/07/2014
Views (455)
current_issue_feature_image
publication_file

Evaluation of the impact of climate on cultivation of spring canola in Hamedan region

Amir Hossein Halabian, Alireza Dehghanpour Farashah, Samira Aligholi, Jafar Ganjali
J. Biodiv. & Environ. Sci. 5(1), 514-520, July 2014.
Copyright Statement: Copyright 2014; The Author(s).
License: CC BY-NC 4.0

Abstract

Weather and climate parameters and their effects on crops, is one of the most effective factors in yield increase. Agro-climatic studies could be used to determine the potential of various regions and the exploit these resources to the max possible extent. In this study, in order to evaluate the agricultural climate of spring canola cultivation in selected stations in Hamedan region , the daily temperature data over a period of 10 years were used. The deviation from the optimum conditions, the degree of active days index and thermal gradient methods are applied to perform the agro-climatic calculations and analysis. The results show that late March the optimum time for planting spring canola for high-altitude and cold regions (Nahavand and Malayer). Thermal gradient analysis and deviation from optimal conditions at different altitudes in the study area show that for every 100 meters increase of altitude, the deviation from the optimal conditions of planting is delayed by one month. This point is important in terms of cultivating time and commercial crops production. According to the obtained agricultural calendar, the most appropriate time for spring planting and harvest in the area are in late March and late August, respectively.

Auld D, Bettis L and MJ Dail. 1984. Planting date and cultivar effect on winter rape production. Agronomy Journal 76,197-200.

Adamsem FJ and T Coffelt. 2005. Planting date effects on flowering, seed yield and oil content of rape and crambe cultivars. Industrial Crops and Products, 21(3), 293-307.

Bagli S, Terres, JM Gallego, J Annoni, A and Dallemand J. 2003. Agro-Pedoclimatological Zoning of Italy, Definition of Homogeneous Pedo-climatic Zoning for Agriculture, Application to Maize, Durum Wheat, Soft Wheat, Spring Barley, Sugar Beet, Rapeseed, Sunflower, Soybean, Tomato, EUR 20550/EN, p 82.

Jones JW, Keating BA, and Porter CH. 2001. Approaches to modular model development. Agric. Sys. 70, 421 – 443.

Malcolm JM, and Stewart DW. 2002. Crop physiology and metabolism heat stress during flowering in summer Brassica. Crop Sci. 42, 797-803.

Nada Bharyava, CRS Tomar, DPS, and Rawson HM. 1996. Phonological development of Brassica compestris, B. Juncea, B.napus and B. carinata grown in controlled environments and form 14 sowing dates in the field. Field Crops Research. 46, 93-10

Poorenbos J. 1977. Guidelines for predicting. Crop water requirements. Food and agriculture organization of united. Rom. Italy.

Muller J, T Behrens and W Diepenbrock. 2006. Use of a new sigmoid growth equation to estimate organ area indices from canopy area index in winter oilseed rape (Brassica napusL.). Field Crop Research, 96, 279-295.

Morrison MJ, and DW Stewart. 2002. Heat stress during flowering in summer Brassica. Crop Science, 42, 797-803.

Robertson M J, and Holland J F.2004. Australian Journal of Exp. Agriculture Indian Mustard to sowing date in the grain belt of North-eastern Australia. Australian journal of Experimental Agriculture, 44, 43-52.

Hocking PJ, M Stapper. 2001. Effect of sowing time and nitrogen fertilizer on canola and wheat, and nitrogen fertilizer on Indian mustard.Australian Journal of Agricultural Science.Camb. 97, 389-415.

Related Articles

Overemphasis on blue carbon leads to biodiversity loss: A case study on subsidence coastal wetlands in southwest Taiwan

Yih-Tsong Ueng, Feng-Jiau Lin, Ya-Wen Hsiao, Perng-Sheng Chen, Hsiao-Yun Chang, J. Biodiv. & Environ. Sci. 27(2), 46-57, August 2025.

An assessment of the current scenario of biodiversity in Ghana in the context of climate change

Patrick Aaniamenga Bowan, Francis Tuuli Gamuo Junior, J. Biodiv. & Environ. Sci. 27(2), 35-45, August 2025.

Entomofaunal diversity in cowpea [Vigna unguiculata (L.) Walp.] cultivation systems within the cotton-growing zone of central Benin

Lionel Zadji, Roland Bocco, Mohamed Yaya, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, J. Biodiv. & Environ. Sci. 27(2), 21-34, August 2025.

Biogenic fabrication of biochar-functionalized iron oxide nanoparticles using Miscanthus sinensis for oxytetracycline removal and toxicological assessment

Meenakshi Sundaram Sharmila, Gurusamy, Annadurai, J. Biodiv. & Environ. Sci. 27(2), 10-20, August 2025.

Bacteriological analysis of selected fishes sold in wet markets in Tuguegarao city, Cagayan, Philippines

Lara Melissa G. Luis, Jay Andrea Vea D. Israel, Dorina D. Sabatin, Gina M. Zamora, Julius T. Capili, J. Biodiv. & Environ. Sci. 27(2), 1-9, August 2025.

Effect of different substrates on the domestication of Saba comorensis (Bojer) Pichon (Apocynaceae), a spontaneous plant used in agroforestry system

Claude Bernard Aké*1, Bi Irié Honoré Ta2, Adjo Annie Yvette Assalé1, Yao Sadaiou Sabas Barima1, J. Biodiv. & Environ. Sci. 27(1), 90-96, July 2025.

Determinants of tree resource consumption around Mont Sangbé national park in western Côte d’Ivoire

Kouamé Christophe Koffi, Serge Cherry Piba, Kouakou Hilaire Bohoussou, Naomie Ouffoue, Alex Beda, J. Biodiv. & Environ. Sci. 27(1), 71-81, July 2025.