Effects of ecological changes on the Iron levels and hazard quotient (HQ) on muscle of pelagic, demersal and neritic fish from Khuzestan, south west of Iran
Paper Details
Effects of ecological changes on the Iron levels and hazard quotient (HQ) on muscle of pelagic, demersal and neritic fish from Khuzestan, south west of Iran
Abstract
The aim of this study was research the changes of ecology on Iron levels and hazard quotient (HQ) on pelagic fish[silver carp (Hypophthalmichthys molitrix), big head carp (Aristichthys nobilis)] demersal fish[ and silver pomfret( Pampusargenteus), Orange – spolted grouper( Epinepheluscoioides), Yellow fin sea bream (Acanthopagruslatus) and grass carp ( Ctenopharyngodon idella)] and neritic fish[Tongue fishes (Cynoglossusarel) and common carp ( Cyprinus carpio)] from Khuzestan, south west of Iran. Farmed fish sampled was prepared from the Azadegan warm water fish culture center and marine Fish sampled was prepared from fishing ports Bhrekan, Abadan and Bandar Emam, Khuzestan south west Iran. Iron concentration measured by wet digestion and atomic absorption spectrometer Perkin Elmer 4100. The results showed iron average concentrations in muscle on pelagic, demersal and neritic fishes to be equal were 17.69, 9.8 and 16.14 and was significantly different (P <0.05). Hazard quotients (HQ) on pelagic, demersal and neritic fishes to be equal were 0.46, 0.32, 0.42 and 0. 42. Hazard quotient in all samples was less than one and so fish nutrition no risk in terms of the amount of iron in the human body.
Burger J, Gachfeld M, Jeitner C, Burke S, Stamm T. 2006.Metal Levels in flathead sole (Hippglossoides elassodon) and great sculpin (Myoxocephalus ployacnthocephalus) from Adak Island, Alaska:potential risk. To predators and fisherman, Environmental research 103(2007)62-69. http://lifesci.dls.rutgers.edu/~burger/PDFs/Amchitk a/103 1 62-69
Chen YC, Chen MH. 2001. Heavy metal concentration in nine species of fishes caught in coastal- waters off Ann-Ping, S.W. Taiwan. J. Food Drug Anal. 9, 107-114. http://www2.nsysu.edu.tw/mbr/Web/download/P2001-1AnnpingFish.pdf
EPA. 1997. Drinking water standards Environment of Criteria and Asessment. http://www.epa.gov/
FAO (Food and Agriculture Organization). 2013. Yearbook annuaire anuario. Fishery and Aquaculture Statistics. Roma. http://www.fao.org/home/en/
FAO. 2011. Fishing and Aquaculture Year Book,Rome. http://www.fao.org/home/en/
FAO. 2005. Fishing and culture year book.Rome pub. 33-35. http://www.fao.org/home/en/
Farkas A, Salanki J, Specziar A. 2003. Age and size specific patterns of heavy metals in the organs of freshwater fish Abramis barama L. Populating a low contaminated site. Water Research. Vol.37. pp.959-964. http://www.ncbi.nlm.nih.gov/pubmed/12553970
Kojadinovic J, Potier M, Corre ML, Cosson R P, Bustamante P. 2006. Mercury content in commercial pelagic fish and its risk assessment in the Western Indian Ocean. Science of the Total Environment, 366, 688-700. http://archimer.ifremer.fr/doc/2006/publication-1862.pdf
Krishnamurti AJ, Nair VR. 1999. Concentration of metals in fishes from Thane and Bassein creeks of Bomloay, India. India J. Mar. Sci. 28, 39-44. http://drs.nio.org/drs/bitstream/2264/1744/2/India n_J_Mar_Sci_28_39.pdf?origin=publication_detail
Oksuz A, Ozilmaz A, Kuver S. 2011. Fatty Acid Composition and Mineral Content of Upeneus moluccensis and Mullus surmuletus. Turkish Journal of Fisheries and Aquatic Sciences, 11, 69-75. http://www.trjfas.org/pdf/issue_11_01/0110.pdf
Pavelieva LG, Zimacov IE, Komarova AV, Golik EM. 1990. Some aspects of influence of antropogenic pollution on sturgeon in the Volga – Caspian region Ibidem. pp. 45 – 52. http://www.sid.ir/fa/VEWSSID/J_pdf/34213901910 .pdf
Phuc Cam Tu N, Ha NN, Ikemoto T, Tanabe, BCST, Takeuchi I. 2008. Regional variations in trace element concentrations in tissues of black tiger shrimp Penaeus monodon (Decapoda: Penaeidae) from South Vietnam. Marine Pollution Bulletin, 57: 858-866.Saei-Dehkordi, S. S., Fallah, A. and Nematollahi, A., http://www.biomedsearch.com/nih/Regional-variations-in-trace-element/18395229.html
Riede K. 2004. Global register of migratory species – from global to regional scales. Final Report of the R&D-Projekt 808 05 081. Federal Agency for Nature Conservation, Bonn, Germany. 329 p.
Romero P. 2002. An etymological dictionary of taxonomy. Madrid, unpublished.
Schumann K. 2001. Safety aspects of iron in food. Annals of Nutrition and Metabolism, 45, 91-101 http://eurekamag.com/research/003/553/00355323 0.php
Storelli MM, Cuttone G, Marcotrigiano GO. 2010. Distribution of trace elements in the tissues of smooth hound Mustelus mustelus (Linnaeus, 1758) from the southern–eastern waters of Mediterranean Sea (Italy). Journal of Environmental Monitoring and Assessment. http://www.ncbi.nlm.nih.gov/pubmed/20422281
Tang WC. 1987. Chinese medicinal materials from the sea. Abstracts of Chinese Medicine 1(4),571-600..
Wicker AM, Gantt LK. 1994. Contaminant assessment of fish Rangia clams and sediments in the lower Pamlico River. http://www.fws.gov/nces/ecotox/contamfishclam.html
Zhang H, Lin YH, Zhang Z, Zhang X, Shaw SL, Knipping EM, Weber RJ, Gold A, Kamens RM, Surratt JD. 2012. Secondary organic aerosol formation from methacrolein photo oxidation: Roles ofNOx level, relative humidity, and aerosol acidity. Environ. Chem., 9,247−262. http://www.sciencedirect.com/science/article/pii/…/ pdf?md5…pid=1-s2
AskarySary, A, Karimi Sari, V (2014), Effects of ecological changes on the Iron levels and hazard quotient (HQ) on muscle of pelagic, demersal and neritic fish from Khuzestan, south west of Iran; JBES, V5, N5, November, P23-28
https://innspub.net/effects-of-ecological-changes-on-the-iron-levels-and-hazard-quotient-hq-on-muscle-of-pelagic-demersal-and-neritic-fish-from-khuzestan-south-west-of-iran/
Copyright © 2014
By Authors and International
Network for Natural Sciences
(INNSPUB) https://innspub.net
This article is published under the terms of the
Creative Commons Attribution License 4.0