Lead biosorption by resting cells of Bacillus cereus

Paper Details

Research Paper 01/03/2012
Views (573)
current_issue_feature_image
publication_file

Lead biosorption by resting cells of Bacillus cereus

Shruti Murthy, Geetha Bali, SK Sarangi
Int. J. Biosci. 2(3), 81-87, March 2012.
Copyright Statement: Copyright 2012; The Author(s).
License: CC BY-NC 4.0

Abstract

A study on the lead biosorption by resting cells of lead resistant bacteria, isolated from industrial effluents, was carried out to ascertain their biosorption capacities. The strain showing highest MIC (minimum inhibition concentration) for lead was selected for the study and identified as Bacillus cereus. Lead biosorption studies on Bacillus cereus pretreated with physical (heat and oven dried) and chemical (Sodium azide) methods showedimproved lead biosorption with the exception of heat treatment in comparison to live biomass. Among the pretreatment methods, azide treatment showed maximum lead biosorption followed by oven drying and heat treatment. The lead biosorption capacity of Bacillus cereus can be exploited for the bioremediation of heavy metal contaminated industrial effluents.

Celaya RJ, Noriega JA, Yeomans JH, Ortega LJ, Ruiz-Manr´ıquez A. 2000.Biosorption of Zn(II) by Thiobacillus ferrooxidans, Bioprocess Engineering 22, 539–542.

Chang J, Law A R, Chang CC. 1997. Biosorption of lead, copper and cadmium by biomass of Pseudomonas aeruginosa PU21. Water Research 31, 1651-1658.

Das N, Charumathi D, Vimala R. 2007. Effect of pretreatment on Cd2+ biosorption by mycelial biomass of Pleurotus florida. African Journal of Biotechnology 6 (22), 2555-2558.

Hsuan-Liang Liu, Bor-Yann Chen, Yann-Wen Lan, Yang-Chu Cheng. 2004. Biosorption of Zn(II) and Cu(II) by the indigenous Thiobacillus thiooxidans. Chemical Engineering Journal 97, 195–201.

Hu M Z C, Norman J M, Faison B D, Reeves M E. 1996. Biosorption of Uranium by Pseudomonas aeruginosa Strain CSU: Characterization and Comparison Studies. Biotechnology and Bioengineering 51, 237-247.

Hussain M A, Aishah Salleh, Pozi Millow. 2009. Characterization of the Adsorption of the Lead (II) by the Nonliving Biomass Spirogyra neglecta (Hasall) Kützing. American Journal of Biochemistry and Biotechnology 5 (2), 75-83.

Kaewsarn P. 2002. Biosorption of copper(II) from aqueous solutions by pre-treated biomass of marine algae Padina sp. Chemosphere 47, 1081-1085.

Klimmek S, Stan HJ, Wilke A, Bunke G, Buchholz R. 2001. Comparative analysis of the biosorption of cadmium, lead, nickel and zinc by Algae. Environmental Science and Technology 35, 4283-4288.

Low K S, Lee C K. 1991. Cadmium uptake by the moss, Calymperes delessertii, Besch. Bioresource Technology 38,1-6.

Matheickal J T, Yu Q. 1997. Biosorption of lead(II) from aqueous solutions by Phellinus badius. Minerals Engineering, 10, 947-957.

Nilanjana Das, Vimala R, Karthika P. 2008. Biosorption of heavy metals- An overview. Indian Journal of Biotechnology 7, 159-169.

Öztürk A T, Ayar A. 2004. Biosorption of nickel(II) and copper(II) ions from aqueous solution by Streptomyces coelicolor A3(2). Colloids and Surfaces B: Biointerfaces 34, 105-111.

Puranik P R, Paknikar K M. 1999. Biosorption of Lead, Cadmium, and Zinc by Citrobacter Strain MCM B-181: Characterization Studies. Biotechnology Progress 15, 228-237.

Puranik P R, Paknikar K M. 1997. Biosorption of Lead and Zinc from Solutions using Streptoverticillium cinnamoneum Waste Biomass. Journal of Biotechnology 55, 113-124.

Puranik P R, Chabukswar N S, Paknikar K M. 1995. Cadmium Biosorption by Streptomyces pimprina Waste Biomass. Applied Microbiology and Biotechnology 43, 1118-1121.

Rama Rao K, Rashmi K, Naveen Lavanya Latha J, Maruthi Mohan P. 2005. Bioremediation of toxic metal ions using biomass of Aspergillus fumigates from fermentative waste. Indian Journal of Biotechnology 4, 139-143.

Schneider I A H, Rubio J, Misra M, Smith R W. 1995. Eichhornia crassipes as biosorbent for heavy metal ions. Minerals Engineering 8, 979-988.

Soltan El-Sayed M, Rehab M Mohamed, Ahmed A Shoreit. 2008. Behavioral response of resistant and sensitive Pseudomonas aeruginosa S22 isolated from Sohag Governorate, Egypt to cadmium stress. African Journal of Biotechnology 7 (14), 2375-2385.

Veglio F, Beolchini F. 1997. Removal of metals by adsorption: A review. Hydrometallurgy 44, 301-316.

Wang J L, Han Y J, Qian Y. 2000. Progress in metal biosorption by microorganisms. Microbiology 27, 449-452.

Volesky B, Holan Z R. 1995. Biosorption of heavy metals. Biotechnology Progress 11(3), 235-250.

Wilde E W, Beneman J R. 1993. Bioremoval of heavy metals by use of microalgae. Biotechnology Advances 11, 781-812.

Wong P K, So C M. 1993. Copper accumulation by a strain of Pseudomonas putida. Microbios 73, 113-121.

Yu Q, Matheickal J T, Yin P, Kaewsarn P. 1999. Heavy metal uptake capacities of common marine macro algal biomass. Water Research 1534, 1534-1537.

Zhang L I, Zhao L I, Yu Y, Chen C. 1998. Removal of lead from aqueous solution by nonliving Rhizopus nigricans. Water Research 32, 1437-1444.

Related Articles

Valorization of fish scale waste for the synthesis of functional gelatin-based biopolymers

N. Natarajan Arun Nagendran, B. Balakrishnan Rajalakshmi, C. Chellapandi Balachandran, Jayabalan Viji, Int. J. Biosci. 27(2), 102-113, August 2025.

Isolation and characterization of phosphate solubilising bacteria undernath Excoecaria agallocha L. of muthupet mangrove reserve

Ms. S. Alice Keerthana, V. Shanmugaraju, P. Arun, M. Poongothai, Int. J. Biosci. 27(2), 83-89, August 2025.

Hematological and biochemical parameters in mono- and associative invasions of domestic chickens by helminths and eimeria in Azerbaijan

Aygun A. Azizova, Ramin S. Mammadov, Ugur Uslu, Int. J. Biosci. 27(2), 76-82, August 2025.

Evaluation of phytocompounds from Azima tetracantha using UV-VIS and FTIR analysis

R. Devi Anbarasi, V. Ramamurthy, Int. J. Biosci. 27(2), 69-75, August 2025.

Design and development of an arduino-based smart feeder system

Arvin Anthony S. Araneta, Int. J. Biosci. 27(2), 29-36, August 2025.