Competitive ability of canola cultivars (Brassica napus L.) against their natural weed populations

Paper Details

Research Paper 01/03/2013
Views (676)
current_issue_feature_image
publication_file

Competitive ability of canola cultivars (Brassica napus L.) against their natural weed populations

Hashem Aminpanah, Saeed Firouzi, Abouzar Abbasian
Int. J. Biosci. 3(3), 121-128, March 2013.
Copyright Statement: Copyright 2013; The Author(s).
License: CC BY-NC 4.0

Abstract

To determine the competitive ability of canola cultivars against natural weed populations, a field experiment was conducted in northern Iran, Mazandaran province, during 2010–2011 growing season. The experiment was arranged as a factorial randomized complete block design with three replications. Factors were four canola cultivars (Hayola-420, Hayola-308, RGS-003 and PF) and two weed management regimes (weed-free condition and weedy condition). Averaged across weed management regimes, grain yield of RGS-003 was significantly higher than that of other canola cultivars. Weed interference significantly reduced canola grain yield and yield components, regardless of canola cultivar. The reduction in grain yield by weed competition was 15.5% for Hayola-308, 11.1% for RGS-003, 9.8% for PF and 6.6% for Hayola-420. This indicates that canola cultivar had different ability to withstand competition, which Hayola-420 had the highest (43.39) ability to withstand competition, followed by PF (40.28), RGS-003 (38.94) and Hayola-308 (34.54). The rank order of competitive ability of the canola cultivars was RGS-003 = Hayola-420 > PF = Hayola-308. Canola grain yield was positively (P < 0.01) correlated with silique number on main stem, grain number in silique of main stem, silique number on side branches, 1000 grain weight, and canola biomass, but negatively (P < 0.01) correlated with weed biomass, and not correlated with grain number in silique of side branches, plant height and harvest index. In conclusion, these results confirmed that there was a significant difference among canola cultivars for competitive ability against weeds.

Challaiah O, Burnside C, Wicks GA, Johnson VA. 1986. Competition between winter wheat (Triticum aestivum) cultivars and downy brome (Bromus tectorum). Weed Science 34, 689-693.

Coleman RK, Gill GS, Rebetzke GJ. 2001. Identification of quantitative trait loci for traits conferring weed competitiveness in wheat (Triticum aestivum L.). Australian Journal of Agricultural Research 52, 1235–1246, http://dx.doi.org/10.1071/AR01055

Chikoye D, Lum AF, Abaidoo R, Menkir A, Kamara A, Ekeleme F, Sanginga N. 2008. Response of Corn Genotypes to Weed Interference and Nitrogen in Nigeria. Weed Science 56, 424–433, http://dx.doi.org/10.1614/WS-07-055.1

Eslami SV, Gill GS, Bellotti B, McDonald G. 2006. Wild radish (Raphanus raphanistrum) interference in wheat. Weed Science 54, 749–756, http://dx.doi.org/10.1614/WS-05-180R2.1

Gibson KD, Hill JE, Foin TC, Caton BP, Fischer AJ. 2001. Water-seeded rice cultivars differ in ability to interfere with watergrass. Agronomy Journal 93, 326-332. DOI: 10.2134/agronj2001.932326x

Jannink JL, Orf     JH, Jordan NR, Shaw RG. 2000. Index selection for weed suppressive ability in soybean. Crop Science, 40, 1087-1094, http://dx.doi.org/10.2135/cropsci2000.4041087x

Jennings PR, Aquino RC. 1968. Studies on competition in rice. III. The mechanism of competition among phenotypes. Evolution 22, 529-542. DOI: 10.2307/2406878

Kawano K, Gonzalez H, Lucena M. 1974. Intra-specific competition, competition with weeds, and spacing response in rice. Crop Science 14, 841-845.

McDonald GK. 2003. Competitiveness against grass weeds in field pea genotypes. Weed Research 43, 48–58, http://dx.doi.org/10.1046/j.1365-3180.2003.00316.x

Paolini R, Faustini F, Saccardo F and Crino P. 2006. Competitive interactions between chick-pea genotypes and weeds. Weed Research 46, 335–344, http://dx.doi.org/10.1111/j.1365-3180.2006.00513.x

Paolini R, Del Puglia S, Principi M, Barcellona O, Riccardi E. 1998. Competition between safflower and weeds as influencedby crop genotype and sowing time. Weed Research 38, 247–255, http://dx.doi.org/10.1046/j.1365-3180.1998.00096.x

SAS, version 9.1.3. 2004. SAS Institute. Cary, NC, USA.

Wang G, McGiffen MEJr, Ehlers JD, Marchi ECS. 2006. Competitive ability of cowpea genotypes with different growth habit. Weed Science 54, 775–782, http://dx.doi.org/10.1614/WS-06-011R.1

Watson PR, Derksen DA, Van Acker RC. 2006. The ability of 29 barley cultivars to compete and withstand competition. Weed Science 54, 783–792, http://dx.doi.org/10.1614/WS-05-020R3.1

Watson PR, Derksen DA, Van Acker RC, Blrvine MC. 2002. The contribution of seed, seedling, and mature plant traits to barley cultivar competitiveness against weeds. Proceedings of the National Meeting- Canadian Weed Science Society, 49- 57.

Zhao DL, Atlin GN, Bastiaans L, Spiertz JHJ. 2006. Comparing rice germplasm for growth, grain yield, and weed-suppressive ability under aerobic soil conditions. Weed Research 46, 444-452, http://dx.doi.org/10.1111/j.1365-3180.2006.00529.x

Related Articles

Modelling the current and future distribution of Okoubaka aubrevillei Pellegr. & Normand under climate change scenarios in Côte d’Ivoire

Sié Fernand Pacôme Ouattara, Franck Placide Junior Pagny, Kouassi Bruno Kpangui, Int. J. Biosci. 27(5), 237-246, November 2025.

Proximate analysis of pelleted sorghum-based feeds as substitute for corn

I. I. Juan S. Daquioag, Michael M. Uy, Int. J. Biosci. 27(5), 232-236, November 2025.

Evolution of the weight of carcasses and offal of Cobb 500 broiler chickens according to the age of slaughter

Soro Soronikpoho, Kouadio Kouakou Parfait, Kouassi Koffi Dongo, Brou Gboko Konan Gatien, Int. J. Biosci. 27(5), 225-231, November 2025.

Agronomic performance of the newly pruned coffee trees at the CSU Lal-lo old coffee plantation

Maribel L. Fernandez, Florante Victor M. Balatico, Ronel A. Collado, Int. J. Biosci. 27(5), 217-224, November 2025.

A comprehensive review and meta-analysis on Alzheimer’s genetics: Exploring the genetic architecture and its application in future genomic medicine

Shafee Ur Rehman, Shabeer Khan, Muhammad Usman, Sakarie Khadar Ibrahim, Int. J. Biosci. 27(5), 204-216, November 2025.

Effect of aqueous leaf extract of Senna occidentalis (Fabaceae) on induced arrhythmia in Rabbits

Obrou Jean Luc Amiltone, Nagalo Ousmane, Mossoun Mossoun Arsène, Abo Kouakou Jean-Claude, Int. J. Biosci. 27(5), 198-203, November 2025.

Targeting proteolytic enzymes in the hemoglobin degradation pathway to inhibit Plasmodium falciparum: An in silico approach

Sethupathi Virumandi, Elumalai Balamurugan, Aakash Ganesan, Sowmiya Ganesan, Srinidhi Raveenthiran, Int. J. Biosci. 27(5), 182-197, November 2025.

Composition and variation of milk from Djallonké goats fed with different diets in Burkina Faso

Alice Gisèle Sidibé-Anago, Vinsoun Millogo, Assouan Gabriel Bonou, Remadji Rufine Djikoldingam, Mariétou Sissao, Michel Kéré, Guy Apollinaire Mensah, Int. J. Biosci. 27(5), 173-181, November 2025.