Characterization and insecticidal potential of bacteria symbiotic with native Heterorhabditis sp. (Nematoda: Heterorhabditidae) against the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae)
Paper Details
Characterization and insecticidal potential of bacteria symbiotic with native Heterorhabditis sp. (Nematoda: Heterorhabditidae) against the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae)
Abstract
The current study aimed to identify symbiotic bacteria associated with previously identified native entomopathogenic nematodes from southern Benin and evaluate their biocontrol potential on fifth instar larvae of Spodoptera frugiperda. Colony characteristics, bioluminescence capacity, and a molecular approach using the 16S rRNA gene were used to identify the symbiotic bacteria. Pathogenicity tests against fifth instar larvae of S. frugiperda were also conducted. The results indicated that all the eighteen bacterial isolates isolated from strains of Heterorhabditis sonorensis are identical (99% sequence similarity) to Photorhabdus isolate R-66822 (accession number MF353507). The symbiotic bacteria associated with the single strain of H. indica are identical (98% sequence similarity) to the Photorhabdus bacterial isolate R-52361 (accession number MF353497). With regard to pathogenicity tests, nine bacterial isolates were pathogenic to S. frugiperda larvae at 35°C, with insect mortalities varying between 0.24 and 78.47%. Better yet, seven of them could still kill the insects at an exposure temperature of 40°C, inducing insect mortalities ranging from 4.86 to 63.65%. Moreover, bacterial densities of 0.450 x 106 CFU/mL and 0.483 x 106 CFU/mL were sufficient for the bacterial isolates BSKassehlo and BSZoundomey, respectively, to kill 50% of the fifth instar larvae of S. frugiperda, whereas BSKissamey, BSAzohoue2, and BSZe1 needed 3.173 x 106 CFU/Ml and 2.900 x 106 CFU/mL, respectively. These findings are sufficiently encouraging to initiate further investigations into the potential of these native bacterial isolates for sustainable management strategies against S. frugiperda in agricultural areas.
Adams BJ, Fodor A, Koppenhöfer HS, Stackebrandt E, Stock PS, Klein MG. 2006. Biodiversity and systematics of nematode–bacterium entomopathogens. Biological Control 37, 32-49. https://doi.org/10.1016/j.biocontrol.2005.11.008
Akhurst RJ. 1980. Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. The Journal of General Microbiology 121, 303-309. https://doi.org/10.1099/00221287-121-2-303
Baele M, Baele P, Vaneechoutte M, Storms V, Butaye P, Devriese LA, Verschraegen G, Gillis M, Haesebrouck F. 2000. Application of tRNAintergenic spacer PCR for identification of Enterococcus species. Journal of Clinical Microbiology 38, 4201-4207. https://doi.org/10.1128/jcm.38.11.4201-4207.2000
Baimey H, Zadji L, Afouda L, Moens M, Decraemer W. 2015. Influence of pesticides, soil temperature and moisture on entomopathogenic nematodes from southern Benin and control of underground termite nest populations. Nematology 17, 1057-1069. https://doi.org/10.1163/15685411-00002923
Bedding RA. 1990. Logistics and strategies for introducing entomopathogenic nematode technology in developing countries. In: Gaugler R, Kaya HK, Eds. Entomopathogenic Nematodes in Biological Control, 1st Edition. Boca Raton, FL: CRC Press, p. 233-248. https://doi.org/10.1201/9781351071741
Boemare N. 2002. Biology, taxonomy and systematics of Photorhabdus and Xenorhabdus. In: Gaugler R, Ed. Entomopathogenic nematology. New York, CABI Publishing, p. 35-56. https://doi.org/10.1079/9780851995670.00
Chaojun Lv, Meng T, Zhong B, Shang Z, Li C, Zahra AA, Abdelrahman TM. 2025. Pathogenicity of Steinernema carpocapsae ALL Entomopathogenic nematodes and their symbiotic bacteria as a biological control agent on red palm weevil. Microorganisms 13, 971. https://doi.org/10.3390/microorganisms13050971
Chisonga C, Chipabika G, Sohati PH, Harrison RD. 2023. Understanding the impact of fall armyworm (Spodoptera frugiperda J. E. Smith) leaf damage on maize yields. PloS one 18, e0279138. https://doi.org/10.1371/journal.pone.0279138
Dhakal M, Nguyen KB, Hunt DJ, Ehlers R, Spiridonov SE, Subbotin SA. 2020. Molecular identification, phylogeny and phylogeography of the entomopathogenic nematodes of the genus Heterorhabditis Poinar, 1976: a multigene approach. Nematology 23, 451-466. https://doi.org/10.1163/15685411-bja10052
El Fakhouri K, Ramdani C, Aasfar A, Boulamtat R, Sijilmassi B, El Bouhssini M, Kadmiri IM. 2023. Isolation, identification and pathogenicity of local entomopathogenic bacteria as biological control agents against the wild cochineal Dactylopius opuntiae (Cockerell) on cactus pear in Morocco. Scientific Reports 13, 21647. https://doi.org/10.1038/s41598-023-48976-8
Fischer-Le Saux M, Viallard V, Brunel B, Normand P, Boemare NE. 1999. Polyphasic classification of the genus Photorhabdus and proposal of new taxa: P. luminescens subsp. luminescens subsp. nov., P. luminescens subsp. akhurstii subsp. nov., P. luminescens subsp. laumondii subsp. nov., P. temperata sp. nov., P. temperata subsp. temperata subsp. nov. and P. asymbiotica sp. nov. International Journal of Systematic and Evolutionary Microbiology 49, 1645-1656. https://doi.org/10.1099/00207713-49-4-1645
Glazer I. 2002. Survival biology. In: Gaugler R, Ed. Entomo pathogenic nematology. New York, USA: CABI Publishing, p. 169-187. https://doi.org/10.1079/9780851995670.0169
Godjo A, Afouda L, Baimey H, Decraemer W, Willems A. 2018. Molecular diversity of Photorhabdus and Xenorhabdus bacteria, symbionts of Heterorhabditis and Steinernema nematodes retrieved from soil in Benin. Archives of Microbiology 200, 589-601. https://doi.org/10.1007/s00203-017-1470-2
Goergen, G., Kumar, P. L., Sankung, S. B., Togola, A., & Tamò, M. 2016. First report of outbreaks of the fall armyworm Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE, 11, e0165632. https://doi.org/10.1371/journal.pone.0165632
Hiltpold I. 2015. Prospects in the application technology and formulation of entomopathogenic nematodes for biological control of insect pests. In: Campos-Herrera R, Ed. Nematode pathogenesis of insects and other pests. Sustainability in plant and crop protection. Switzerland: Springer International Publishing, p. 187-205. https://doi.org/10.1007/978-3-319-18266-7_7.
Houngbo S, Zannou A, Aoudji A, Sossou HC, Sinzogan A, Sikirou R, Zossou E, Vodounon HST, Adomou A, Ahanchédé A. 2020. Farmers’ knowledge and management practices of fall armyworm, Spodoptera frugiperda (J.E. Smith) in Benin, West Africa. Agriculture 10, 430. https://doi.org/10.3390/agriculture10100430
Hunt DJ, Nguyen KB. 2016. Advances in entomopathogenic nematode taxonomy and phylogeny. Leiden-Boston: Brill, p. 13-58. https://doi.org/10.1163/9789004285347
Hyršl P, Číž M, Lojek A. 2004. Comparison of the bioluminescence of Photorhabdus species and subspecies type strains. Folia Microbiologica 49, 539-542. https://doi.org/10.1007/BF02931530.
Kazimierczak W, Skrzypek H, Sajnaga E, Skowronek M, Wasko A, Kreft A. 2017. Strains of Photorhabdus spp. associated with polish Heterorhabditis isolates: Their molecular and phenotypic characterization and symbiont exchange. Archives of Microbiology 199, 979-989. https://doi.org/10.1007/s00203-017-1368-z
Kumar S, Stecher G, Suleski M, Sanderford M, Sharma S, Tamura K. 2024. MEGA12: Molecular Evolutionary Genetic Analysis Version 12 for Adaptive and Green Computing. Molecular biology and evolution 41, msae263. https://doi.org/10.1093/molbev/msae263
Luca R, Alberto S, Ignazio F. 2013. Emerging entomopathogenic bacteria for insect pest management. Bulletin of Insectology 66, 181-186.
Machado RAR, Malan AP, Boss A, Claasen NJ, Bhat AH, Abolafia J. 2024. Photorhabdus africana sp. nov. isolated from Heterorhabditis entomopathogenic nematodes. Current microbiology 8, 240. https://doi.org/10.1007/s00284-024-03744-3
Migunova VD, Sasanelli N. 2021. Bacteria as biocontrol tool against phytoparasitic nematodes. Plants 10, 389. https://doi.org/10.3390/plants10020389.
Mohan S, Sabir N. 2005. Biosafety Concerns on the Use of Photorhabdus luminescens as Biopesticide: Experimental Evidence of Mortality in Egg Parasitoid Trichogramma spp. Current Science 89, 1268-1272.
Ngugi CN, Wachira PM, Mbaka JN, Okoth S, Mangua PW. 2021. Characterization and pathogenicity of symbiotic bacteria associated with entomopathogenic nematode: Steinernema species KALRO. East African Journal of Science, Technology and Innovation 2, 1-13. https://doi.org/10.37425/eajsti.v2i4.289
Orozco RA, Hill T, Stock SP. 2013. Characterization and Phylogenetic Relationships of Photorhabdus luminescens subsp. sonorensis (γ-Proteobacteria: Enterobacteriaceae), the Bacterial Symbiont of the Entomopathogenic Nematode Heterorhabditis sonorensis (Nematoda: Heterorhabditidae). Current Microbiology 66, 30-39. https://doi.org/10.1007/s00284-012-0220-6
Poinar GO, Thomas GM. 1966. Significance of Achromobacter nematophilus in the development of the nematode DD-136. Parasitology 56, 385-390. http://dx.doi.org/10.1017/S0031182000070980
Qin L, Lixin H, Yurong L, Guangjie H, Chuanming L, Yang X, Jianhang Q, Jian X. 2023. Infecting and Toxic Effect of Steinernema carpocapsa N-Yz1 to Fall Armyworm, Spodoptera frugiperda LIU. Chinese Journal of Biological Control 39, 542-549.
Saitou N, Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
Sajnaga E, Kazimierczak W. 2020. Evolution and taxonomy of nematode-associated entomopathogenic bacteria of the genera Xenorhabdus and Photorhabdus: an overview. Symbiosis 80, 1-13. https://doi.org/10.1007/s13199-019-00660-0.
Salazar-Gutiérrez JD, Castelblanco A, Rodríguez-Bocanegra MX, Teran W, Sáenz-Aponte A. 2017. Photorhabdus luminescens subsp. akhurstii SL0708 pathogenicity in Spodoptera frugiperda (Lepidoptera: Noctuidae) and Galleria mellonella (Lepidoptera: Pyralidae). Journal of Asia-Pacific Entomology 20, 1112-1121. https://doi.org/10.1016/j.aspen.2017.08.001
Salvadori JDM, Defferrari MS, Ligabue-Braun R, Lau EY, Salvadori JR, Carlini CR. 2012. Characterization of entomopathogenic nematodes and symbiotic bacteria active against Spodoptera frugiperda (Lepidoptera: Noctuidae) and contribution of bacterial urease to the insecticidal effect. Biological Control 63, 253-263. https://doi.org/10.1016/j.biocontrol.2012.08.002 .
SAS Institute. 2011. SAS version 9.3 system options: reference, 2nd edn. SAS Institute, Cary
Sharmila R, Priya MS, Subramanian S, Poornima K, Pandiyan M. 2018. Review on ecology of entomopathogenic nematodes. Journal of Entomology and Zoology Studies 6, 1086-1093.
Sun B, Zhang X, Song L, Zheng L, Wei X, Gu X, Cui Y, Hu B, Yoshiga T, Abd-Elgawad MM, Ruan W. 2021. Evaluation of indigenous entomopathogenic nematodes in Southwest China as potential biocontrol agents against Spodoptera litura (Lepidoptera: Noctuidae). Journal of nematology 53, e2021-83. https://doi.org/10.21307/jofnem-2021-083
Thanwisai A, Tandhavanant S, Saiprom N, Waterfield NR, Ke Long P, Bode HB, Peacock SJ, Chantratita N. 2012. Diversity of Xenorhabdus and Photorhabdus spp. and their symbiotic entomopathogenic nematodes from Thailand. PloS one 7, e43835. https://doi.org/10.1371/journal.pone.0043835
Thomas GM, Poinar GO. 1979. Xenorhabdus gen. nov., a genus of entomopathogenic, nematophilic bacteria of the family Enterobacteriaceae. International Journal of Systematic Bacteriology 29, 352-360. https://doi.org/10.1099/00207713-29-4-352.
Torres-Barragan A, Suazo A, Buhler WG, Cardoza YJ. 2011. Studies on the entomopathogenicity and bacterial associates of the nematode Oscheius carolinensis. Biological Control 59, 123-129. https://doi.org/10.1016/j.biocontrol.2011.05.020.
Zadji L, Baimey H, Afouda L, Houssou FG, Waeyenberge L, de Sutter N, Moens M, Decraemer W. 2013. First record on the distribution of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) in Southern Benin. Russian Journal of Nematology 21, 117-130.
Zadji L, Baimey H, Afouda L, Moens M, Decraemer W. 2014a Characterization of biocontrol traits of heterorhabditid entomopathogenic nematode isolates from South Benin targeting the termite pest Macrotermes bellicosus. BioControl 59, 333-344. https://doi.org/10.1007/s10526-014-9568-9
Zadji L, Baimey H, Afouda L, Moens M, Decraemer W. 2014b. Effectiveness of different Heterorhabditis isolates from Southern Benin for biocontrol of the subterranean termite, Macrotermes bellicosus (Isoptera: Macrotermitinae), in laboratory trials. Nematology 16, 109-120. https://doi.org/10.1163/15685411-00002749
Zuckerkandl E, Pauling L. 1965. Molecules as documents of evolutionary history. Journal of theoretical biology 8, 357-366.https://doi.org/10.1016/0022-5193(65)90083-4
Lionel Zadji, Roland Bocco, Anique Godjo, Leonard Afouda, Hugues Baimey, 2025. Characterization and insecticidal potential of bacteria symbiotic with native Heterorhabditis sp. (Nematoda: Heterorhabditidae) against the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Int. J. Biosci., 27(2), 287-299.
Copyright © 2025 by the Authors. This article is an open access article and distributed under the terms and conditions of the Creative Commons Attribution 4.0 (CC BY 4.0) license.