Agroforestry in woody-encroached Sub-Saharan savannas: Transforming ecological challenges into sustainable opportunities
Paper Details
Agroforestry in woody-encroached Sub-Saharan savannas: Transforming ecological challenges into sustainable opportunities
Abstract
Woody plant encroachment (WPE) is the widespread proliferation of trees and shrubs into historically open ecosystems. This phenomenon affects Sub-Saharan savannas, challenging biodiversity conservation and agricultural productivity. While typically viewed negatively in protected areas due to impacts on grass-dependent species and ecological processes, WPE has nuanced effects in agricultural contexts. Encroaching woody species can enhance soil fertility, moderate microclimates, control erosion, and provide valuable non-timber forest products, supporting agricultural resilience and rural livelihoods. This perspective paper advocates agroforestry as a transformative way to convert WPE from an ecological threat into an opportunity for sustainable land management. Drawing from successful West African agroforestry practices, including Assisted natural regeneration, Parkland agroforestry, and Alley cropping, we illustrate their benefits for agricultural productivity, climate resilience, and income diversification. However, scaling up agroforestry faces technical and institutional barriers, notably limited farmer knowledge, insufficient extension services, insecure land tenure and weak market structures. We recommend clear land and tree tenure policies, explicit agroforestry integration into national policies, financial incentives such as subsidies and payments for ecosystem services, and capacity building through targeted training. Finally, we highlight critical research priorities, emphasizing species-specific ecological studies, socio-economic evaluations, climate resilience assessments, and participatory community engagement. Our ongoing research in the Guinean savannas of Côte d’Ivoire near Lamto Reserve and Mont Sangbé National Park addresses all these aspects, aiming to enhance rural livelihoods, food security, and biodiversity conservation.
Acheampong E, Insaidoo TFG, Ros-Tonen MAF. 2016. Management of Ghana’s modified taungya system: Challenges and strategies for improvement. Agroforestry Systems 90(4), 659–674. https://doi.org/10.1007/s10457-016-9946-7
Anchang JY, Prihodko L, Kaptué AT, Ross CW, Ji W, Kumar SS, Lind B, Sarr MA, Diouf AA, Hanan NP. 2019. Trends in woody and herbaceous vegetation in the savannas of West Africa. Remote Sensing 11(5), 576. https://doi.org/10.3390/rs11050576
Appiah M, Yeboah B, Yeboah MA, Danquah JA. 2020. Community experiences in the use of modified taungya system for restoring degraded forests and improving livelihoods in Ghana. Environmental Management and Sustainable Development 9(3), 1. https://doi.org/10.5296/emsd.v9i3.17047
Axelsson CR, Hanan NP. 2018. Rates of woody encroachment in African savannas reflect water constraints and fire disturbance. Journal of Biogeography 45(6), 1209–1218. https://doi.org/10.1111/jbi.13221
Barlagne C, Bézard M, Drillet E, Larade A, Diman JL, Alexandre G, Vinglassalon A, Nijnik M. 2023. Stakeholders’ engagement platform to identify sustainable pathways for the development of multi-functional agroforestry in Guadeloupe, French West Indies. Agroforestry Systems 97(3), 463–479. https://doi.org/10.1007/s10457-021-00663-1
Bayala J, Sanou J, Teklehaimanot Z, Kalinganire A, Ouédraogo S. 2014. Parklands for buffering climate risk and sustaining agricultural production in the Sahel of West Africa. Current Opinion in Environmental Sustainability 6, 28–34. https://doi.org/10.1016/j.cosust.2013.10.004
Binam JN, Oduol J, Place F, Kalinganire A. 2015. Unlocking market potential of agroforestry products among smallholder farmers in the Sahelian and Sudanian ecozone countries of West Africa. Small-Scale Forestry 14(4), 507–529. https://doi.org/10.1007/s11842-015-9303-0
Binam JN, Place F, Kalinganire A, Hamade S, Boureima M, Tougiani A, Dakouo J, Mounkoro B, Diaminatou S, Badji M, Diop M, Babou AB, Haglund E. 2015. Effects of farmer managed natural regeneration on livelihoods in semi-arid West Africa. Environmental Economics and Policy Studies 17(4), 543–575. https://doi.org/10.1007/s10018-015-0107-4
Bond WJ, Midgley GF. 2012. Carbon dioxide and the uneasy interactions of trees and savannah grasses. Philosophical Transactions of the Royal Society B: Biological Sciences 367(1588), 601–612. https://doi.org/10.1098/rstb.2011.0182
Buttoud G, Place F, Gauthier M. 2013. Advancing agroforestry on the policy agenda: A guide for decision-makers. FAO.
Case MF, Staver AC. 2017. Fire prevents woody encroachment only at higher-than-historical frequencies in a South African savanna. Journal of Applied Ecology 54(3), 955–962. https://doi.org/10.1111/1365-2664.12805
Chará J, Reyes E, Peri P, Otte J, Arce E, Schneider F. 2019. Silvopastoral systems and their contribution to improved resource use and sustainable development goals: Evidence from Latin America. FAO, CIPAV and Agri Benchmark, Cali, 60 pp.
De Leeuw J, Osano P, Said M, Ayantunde A, Dube S, Neely C, Vrieling A, Thornton P, Ericksen P. 2019. The pastoral farming system – Balancing between tradition and transition. In: Dixon J, Garrity DP, Boffa J-M, Williams TO, Amede T, Auricht C, Lott R, Mburathi G (eds). Farming Systems and Food Security in Africa, pp. 318–353. Routledge. https://doi.org/10.4324/9781315658841-10
Devine AP, McDonald RA, Quaife T, Maclean IMD. 2017. Determinants of woody encroachment and cover in African savannas. Oecologia 183(4), 939–951. https://doi.org/10.1007/s00442-017-3807-6
Ding J, Eldridge DJ. 2024. Woody encroachment: Social–ecological impacts and sustainable management. Biological Reviews 99, 1909–1926. https://doi.org/10.1111/brv.13104
Do H, Whitney C, Storm H, Nguyen HTX, La N, Luedeling E. 2025. Markets and incentives strongly drive agroforestry adoption: Insights from ethnic minority smallholders in Son La, Vietnam. Agroforestry Systems 99(5). https://doi.org/10.1007/s10457-025-01199-4
Donovan VM, Burnett JL, Bielski CH, Birgé HE, Bevans R, Twidwell D, Allen CR. 2018. Social–ecological landscape patterns predict woody encroachment from native tree plantings in a temperate grassland. Ecology and Evolution 8(19), 9624–9632. https://doi.org/10.1002/ece3.4340
Dumont ES, Bonhomme S, Pagella TF, Sinclair FL. 2019. Structured stakeholder engagement leads to development of more diverse and inclusive agroforestry options. Experimental Agriculture 55(S1), 252–274. https://doi.org/10.1017/s0014479716000788
Eldridge DJ, Bowker MA, Maestre FT, Roger E, Reynolds JF, Whitford WG. 2011. Impacts of shrub encroachment on ecosystem structure and functioning: Towards a global synthesis. Ecology Letters 14(7), 709–722. https://doi.org/10.1111/j.1461-0248.2011.01630.x
Fané S, Agbotui DK, Graefe S, Sanou L, Sanogo S, Buerkert A. 2024. Adoption of agroforestry systems by smallholders’ farmers in the Sudano-Sahelian zones of Mali and Burkina Faso, West Africa. Agroforestry Systems 98(7), 2385–2396. https://doi.org/10.1007/s10457-024-01020-8
Gao J, Barbieri C, Valdivia C. 2014. A socio-demographic examination of the perceived benefits of agroforestry. Agroforestry Systems 88(2), 301–309. https://doi.org/10.1007/s10457-014-9683-8
Hombegowda HC, Adhikary PP, Jakhar P, Madhu M. 2022. Alley cropping agroforestry system for improvement of soil health. In: Shit PK, Adhikary PP, Bhunia GS, Sengupta D (eds). Environmental science and engineering, pp. 529–549. Springer International Publishing. https://doi.org/10.1007/978-3-031-09270-1_23
Honda EA, Durigan G. 2016. Woody encroachment and its consequences on hydrological processes in the savannah. Philosophical Transactions of the Royal Society B: Biological Sciences 371(1703), 20150313. https://doi.org/10.1098/rstb.2015.0313
Intergovernmental Panel on Climate Change (IPCC). 2023. Climate change 2021 – The physical science basis: Working group I contribution to the sixth assessment report of the Intergovernmental Panel on Climate Change (1st ed.). Cambridge University Press. https://doi.org/10.1017/9781009157896
Isaac M, Muhammad L, Joweria N. 2024. Social and ecological contributions of the Taungya agroforestry system in the restoration of Mount Elgon National Park, Uganda. East African Journal of Forestry and Agroforestry 7(1). https://doi.org/10.37284/eajfa.7.1.2307
Jose S. 2009. Agroforestry for ecosystem services and environmental benefits: An overview. Agroforestry Systems 76(1), 1–10. https://doi.org/10.1007/s10457-009-9229-7
Kgosikoma OE, Mogotsi K. 2013. Understanding the causes of bush encroachment in Africa: The key to effective management of savanna grasslands. Tropical Grasslands – Forrajes Tropicales 1(2), 215–219. https://doi.org/10.17138/tgft(1)215-219
Li F, Diop S, Hirwa H, Maesho S, Ning X, Tian C, Qiao Y, Faye C, Cissé B, Guisse A, Leng P, Peng Y, Chen G. 2024. Dryland social-ecological systems in Africa. In: Fu B, Stafford-Smith M (eds). Dryland social-ecological systems in changing environments, pp. 273–323. Springer Nature Singapore. https://doi.org/10.1007/978-981-99-9375-8_9
Liu Z, Wimberly M, Dwomoh F. 2016. Vegetation dynamics in the Upper Guinean Forest region of West Africa from 2001 to 2015. Remote Sensing 9(1), 5. https://doi.org/10.3390/rs9010005
Lutz E, World Bank (eds). 1998. Agriculture and the environment: Perspectives on sustainable rural development. World Bank.
Luvuno L, Biggs R, Stevens N, Esler K. 2022. Perceived impacts of woody encroachment on ecosystem services in Hluhluwe, South Africa. Ecology and Society 27(1). https://doi.org/10.5751/es-12767-270104
Marston C, Aplin P, Wilkinson D, Field R, O’Regan H. 2017. Scrubbing up: Multi-scale investigation of woody encroachment in a Southern African savannah. Remote Sensing 9(5), 419. https://doi.org/10.3390/rs9050419
Meinhold K, Darr D. 2021. Using a multi-stakeholder approach to increase value for traditional agroforestry systems: The case of baobab (Adansonia digitata L.) in Kilifi, Kenya. Agroforestry Systems 95(7), 1343–1358. https://doi.org/10.1007/s10457-020-00562-x
Mitchard ETA, Flintrop CM. 2013. Woody encroachment and forest degradation in sub-Saharan Africa’s woodlands and savannas 1982–2006. Philosophical Transactions of the Royal Society B: Biological Sciences 368(1625), 20120406. https://doi.org/10.1098/rstb.2012.0406
Nair PKR. 1993. State-of-the-art of agroforestry research and education. Agroforestry Systems 23(2–3), 95–119. https://doi.org/10.1007/bf00704909
Nasare LI, Kwapong PK, Doke DA. 2019. Insect pollinator dependence of shea (Vitellaria paradoxa C.F. Gaertn.) in the Guinea Savanna zone of Ghana. Ecological Processes 8(1). https://doi.org/10.1186/s13717-019-0202-8
Osborne CP, Charles-Dominique T, Stevens N, Bond WJ, Midgley G, Lehmann CER. 2018. Human impacts in African savannas are mediated by plant functional traits. New Phytologist 220(1), 10–24. https://doi.org/10.1111/nph.15236
Place FC, Torquebiau E, Detlefsen G, Gauthier M, Buttou G. 2012. Improved policies for facilitating the adoption of agroforestry. In: Kaonga LM (ed). Agroforestry for biodiversity and ecosystem services—Science and practice. InTech. https://doi.org/10.5772/34524
Pouliot M, Bayala J, Ræbild A. 2012. Testing the shade tolerance of selected crops under Parkia biglobosa (Jacq.) Benth. in an agroforestry parkland in Burkina Faso, West Africa. Agroforestry Systems 85(3), 477–488. https://doi.org/10.1007/s10457-011-9411-6
Roy MK, Fort MP, Kanter R, Montagnini F. 2025. Agroforestry: A key land use system for sustainable food production and public health. Trees, Forests and People 20, 100848. https://doi.org/10.1016/j.tfp.2025.100848
Sankaran M, Ratnam J, Hanan N. 2008. Woody cover in African savannas: The role of resources, fire and herbivory. Global Ecology and Biogeography 17(2), 236–245. https://doi.org/10.1111/j.1466-8238.2007.00360.x
Sanou L, Savadogo P, Ezebilo EE, Thiombiano A. 2019. Drivers of farmers’ decisions to adopt agroforestry: Evidence from the Sudanian savanna zone, Burkina Faso. Renewable Agriculture and Food Systems 34(2), 116–133. https://doi.org/10.1017/s1742170517000369
Sileshi GW. 2016. The magnitude and spatial extent of influence of Faidherbia albida trees on soil properties and primary productivity in drylands. Journal of Arid Environments 132, 1–14. https://doi.org/10.1016/j.jaridenv.2016.03.002
Smit IPJ, Prins HHT. 2015. Predicting the effects of woody encroachment on mammal communities, grazing biomass and fire frequency in African savannas. PLOS ONE 10(9), e0137857. https://doi.org/10.1371/journal.pone.0137857
Sollen-Norrlin M, Ghaley BB, Rintoul NLJ. 2020. Agroforestry benefits and challenges for adoption in Europe and beyond. Sustainability 12(17), 7001. https://doi.org/10.3390/su12177001
Stevens N, Erasmus BFN, Archibald S, Bond WJ. 2016. Woody encroachment over 70 years in South African savannahs: Overgrazing, global change or extinction aftershock? Philosophical Transactions of the Royal Society B: Biological Sciences 371(1703), 20150437. https://doi.org/10.1098/rstb.2015.0437
Utaile YU, Van Geel M, Muys B, Cheche SS, Helsen K, Honnay O. 2021. Woody encroachment of an East-African savannah ecosystem alters its arbuscular mycorrhizal fungal communities. Plant and Soil 464(1–2), 303–320. https://doi.org/10.1007/s11104-021-04949-2
Van Asseldonk M, Girvetz E, Pamuk H, Wattel C, Ruben R. 2023. Policy incentives for smallholder adoption of climate-smart agricultural practices. Frontiers in Political Science 5. https://doi.org/10.3389/fpos.2023.1112311
Venter ZS, Cramer MD, Hawkins H-J. 2018. Drivers of woody plant encroachment over Africa. Nature Communications 9(1). https://doi.org/10.1038/s41467-018-04616-8
Weston P, Hong R, Kaboré C, Kull CA. 2015. Farmer-managed natural regeneration enhances rural livelihoods in dryland West Africa. Environmental Management 55(6), 1402–1417. https://doi.org/10.1007/s00267-015-0469-1
White JDM, Stevens N, Fisher JT, Reynolds C. 2024. Woody plant encroachment drives population declines in 20% of common open ecosystem bird species. Global Change Biology 30(6). https://doi.org/10.1111/gcb.17340
Wilcox BP, Basant S, Olariu H, Leite PAM. 2022. Ecohydrological connectivity: A unifying framework for understanding how woody plant encroachment alters the water cycle in drylands. Frontiers in Environmental Science 10. https://doi.org/10.3389/fenvs.2022.934535
Zabala A, Pascual U, García-Barrios LE, Mukherjee N. 2025. Drivers to adopt agroforestry and sustainable land-use innovations: A review and framework for policy. Land Use Policy 151, 107468. https://doi.org/10.1016/j.landusepol.2025.107468
Zo-Bi IC, Hérault B. 2023. Fostering agroforestry? Lessons from the Republic of Côte d’Ivoire: English version. Bois & Forets Des Tropiques 356, 99–104. https://doi.org/10.19182/bft2023.356.a37234
Yao Anicet Gervais Kouamé, Pabo Quévin Oula, Kouamé Fulgence Koffi, Ollo Sib, Adama Bakayoko, Karidia Traoré, 2025. Agroforestry in woody-encroached Sub-Saharan savannas: Transforming ecological challenges into sustainable opportunities. J. Biodiv. Environ. Sci., 27(3), 10-22.
Copyright © 2025 by the Authors. This article is an open access article and distributed under the terms and conditions of the Creative Commons Attribution 4.0 (CC BY 4.0) license.