Comparative effectiveness of BioArt and Rapax AS in reducing the main pests in plots of cabbage and tomato in the Niayes area

Paper Details

Research Paper 21/09/2025
Views (130)
current_issue_feature_image
publication_file

Comparative effectiveness of BioArt and Rapax AS in reducing the main pests in plots of cabbage and tomato in the Niayes area

Toffène Diome, Mamecor Faye, Ablaye Faye, Astou Faye, Mbacké Sembène
Int. J. Biosci. 27(3), 177-185, September 2025.
Copyright Statement: Copyright 2025; The Author(s).
License: CC BY-NC 4.0

Abstract

In Senegal, vegetable yield represents 83.04% of total horticultural production. Several speculations have contributed to this increase; this is the example of cabbage and tomato. However, the latter are subject to many predations, notably those of pest insects. To overcome these problems, farmers resort to the use of chemical inputs that are not only harmful to human health and the environment but also cause resistance from pests. It is in this context that this work which consists of testing the effectiveness of BioArt to combat these pests, with the aim of preserving tomato and cabbage crops in the Niayes area. The Fisher block was the experimental device used for both speculations. It consists of random blocks divided into nine elementary plots each, including 3 treatments (T0 = water, T1 = BioArt, T2 = Rapax AS (reference control) and three repetitions. The application of BioArt and Rapax in culture media has been shown to be ineffective on Plutella xylostella, Hellula undalis and Pseudococcus sp. (p>0.05). On the other hand, BioArt is very effective on Helicoverpa armigera (p=0.03) as well as Rapax. It should also be noted that BioArt is more effective against tomato and cabbage pests than Rapax and seems to have a positive effect on the yield and growth of the plant. The evaluated BioArt proved effective in safeguarding crops, highlighting its potential as a valuable tool in integrated pest management strategies

Ba AR, Diome T, Cheikh AKMD, Sembene M. 2019. Use of plant biocisal substance based on Crataeva religiosa against Tuta absoluta (Lépidoptères : Gelichiidae) dévastateurs of tomate crops. International Journal of Engineering Technologies and Management Researche 6(8), 63-71.  https://doi.org/10.29121/ijetmr.v6.i8.2019.442

Badenes-Perez FR, Gershenzon J, David G, Heckel DG. 2014. Insect attraction versus plant defense: young leaves high in glucosinolates stimulate  oviposition by a specialist herbivore despite poor larval survival due to high saponin content. PLoS One 9(4), e95766. https://doi.org/10.1371/journal.pone.0095766

Campos WG, Schoeroder JH, Picanco MC. 2003. Performance of an oligophagous insect in relation to the age of the host plant. Neotrop Entomol 32(4), 671-676. https://doi.org/10.1590/S1519-566X2003000400019

Chougourou DC, Agbaka A, Adjakpa JB, Koutchika RE, Kponhinto UGAEJN. 2012. Inventaire préliminaire de l’entomofaune des champs de tomate (Lycopersicon esculentum Mill) dans la commune de Djakotomey au Benin. International Journal of Biological and Chemical Science 6(4), 1798-1804.  http://dx.doi.org/10.4314/ijbcs.v6i4.34

Collingwood TR. 1984. This good-health regimen keeps employes fit–and school budgets trim. American school board journal 171(4), 48-49.

Diatte M, Brévault T, Sylla S, Tendeng E, Sall-Sy D, Diarra K. 2018. Arthropod pest complex and associated damage in field-grown tomato in Senegal. International Journal of Tropical Insect Science, 38(3), 243–253.  http://dx.doi.org/10.1017/S1742758418000061.

Garba M, Adamou H, Mario DM, Ousmarou S, Gougari B, Ousmane T, Salifou A, Delmas P. 2017. Utilisation des extraits aqueux de neem (Azadirachta indica) dans la lutte contre la chenille mineuse de la tomate, Tuta absoluta (Meyrick 1972). Conférence international sur les ravageurs et auxiliaires en agriculture Monpellier 432-440p.

Ka S. 2010. Gestion intégrée des ravageurs du chou dans les Niayes de Sangalkam (Dakar Sénégal) Evaluation de l’efficacité d’un traitement à base d’association de culture (tomate /chou) et de combinaison de biopesticides (neem/Biobit). Mémoire, Université cheikh Anta Diop de Dakar Sénégal. 31 p.

Kafadaroff G. 2008. Agriculture durable & nouvelle  révolution verte. Le publieur. ISBN-10, 2350610128, 398 p.

Kibblewhite MG, Ritz K, Swift MJ. 2007. Soil health in agricultural systems. Philosophical Transactions of the Royal Society. Biological Sciences 363(1492), 685-701. https://doi.org/10.1098/rstb.2007.2178.

Labou B, Bordat D, Brevault T, Diarra K. 2016. Importance de la « Teigne du chou » dans les Niayes au Sénégal: interrelations avec la température et les cultivars utilisés. International Journal of Biological and Chemical Sciences 10(2), 706-721. http://dx.doi.org/10.4314/ijbcs.v10i2.21.

Labou B, Bordat D, Brevault T, Diarra K. 2017. Spatiotemporal distribution and impact of diamondback moth parasitoids in the Dakar Niayes in Senegal. International Journal of Biological and Chemical 11(3), 1288-1298. https://dx.doi.org/10.4314/ijbcs.v11i3.28

Mondedji AD, Nyamador WS, Amevoin K, Adéoti R, Abbey GA, Ketoh GK, Glitho A. 2015. Analyse de quelques aspects du système de production légumière et perception des producteurs de l’utilisation d’extraits botaniques dans la gestion des insectes ravageurs des cultures maraîchères au Sud du Togo. International Journal of Biological and Chemical Sciences 9(1), 98–107.  https://dx.doi.org/10.4314/ijbcs.v9i1.10

Nagawa F. 2003. Incidence of diamondback mot Plutella xylostella and its parasitoids on cabbage in Uganda, MSc thesis, Makéréré University, Uganda.

Ngom S, Diome T, Diop B, Sembene M. 2020. Effet des extraits aqueux de sur les principaux ravageurs du chou en culture au Sénégal. International Journal of Biological and Chemical Sciences 14(5), 1600-1610. https://doi.org/10.4314/ijbcs.v14i5.9

Nibouche S. 1994. Cycle évolutif d’Helicoverpa armigera (Hubner.1808) (Lepidoptera. Noctuidae) dans l’ouest du Burkina-Faso. Biologie et variabilité géographique des populations. Thèse de doctorat. ENSA de Montpellier. France. 143 p.

Nibouche S, Guérard N, Martin P, Vaissayre M. 2007. Modelling the role of refuges for sustainable management of dual-gene Bt cotton in West Africa smallholder farming systems. Crop Protection 26(6), 828-836.

Sarfraz, Keddie BA. 2005. Conserving the efficacy of insecticides against Plutella xylostella (L.) (Lep, Plutellidae). Journal of Applied Entomology 129(3), 149-157. https://doi.org/10.1111/j.1439-0418.2005.00930.x

Savana A. 2021. Sénégal : Hausse de 12,3 % de la population horticole en 2019-2020.13p

Sow G, Arvanitakis L, Niassy S, Diarra K, Bordat D. 2013. Performance of the parasitoid Oomyzus sokolowskii (Hymenoptera: Eulophidae) on its host Plutella xylostella (Lepidoptera: Plutellidae) under laboratory conditions. International Journal of Tropical Insect Science 33(1), 38–45.  https://doi.org/10.1017/S1742758412000422

Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S. 2002. Agricultural sustainability and intensive production practices. Nature 418(6898), 671-677. https://doi.org/10.1038/nature01014

Thiaw C. 2008. Bioactives des extraits de Calotropis procera et de Senna occidentalis sur Caryedon serratus (ol.), ravageur des stocks et semences d’arachide au Sénégal. Thèse de doctorat, Université cheikh Anta Diop de Dakar. 196 p.

Traore O, Sereme A, Dabire CM, Some K, Nebie RH. 2015. Effet des extraits du thé de Gambie (Lippia multiflora Moldenk) et du neem (Azadirachta indica A. Juss.) sur Helicoverpa armigera et les Thrips de la tomate (Lycopersicon esculentum Mill.). Journal of applied Biosciences 95, 8930-8936.  https://doi.org/10.4314/jab.v95i1.2

Tano A, Oh Y, Fukushima K, Kurosa Y, Wakabayashi Y, Fujita K, Okawa A. 2019. Potential bone fragility of mid-shaft atypical femoral fracture : biomechanical analysis by a CT-based nonlinear finite element method. Injury 50(11), 1876-1882.https://doi.org/10.1016/j.injury.2019.09.004

Related Articles

Sensory evaluation of horn snail (Telescopium telescopium) patty

Ma. Isabel P. Lanzaderas, Gilbert P. Panimdim, Proceso C. Valleser Jr.*, Int. J. Biosci. 28(2), 7-16, February 2026.

Two years evolution of deltamethrin, malathion and pirimiphos-methyl resistance in Aedes aegypti from urban in peri urban sites of Ouagadougou, Burkina Faso

Hyacinthe K. Toe*, Moussa W. Guelbeogo, Soumananaba Zongo, Aboubacar Sombie, Athanase Badolo, Int. J. Biosci. 28(2), 1-6, February 2026.

Physicochemical characterization of annatto seeds (Bixa orellana) sold in Ouagadougou and their oils extracted using chemical processes

Mah Alima Esther Traoré*, Adama Lodoun, Pingdwindé Marie Judith Samadoulougou-Kafando, Nestor Beker Dembélé, Kiswendsida Sandrine Léticia Dayamba, Charles Parkouda, Int. J. Biosci. 28(1), 169-178, January 2026.

Inventory of african yam bean (Sphenostylis stenocarpa (Hochst. ex A. Rich.) Harms) diversity in some Yoruba areas of Benin

Orobiyi Azize*, Faton Manhognon Oscar Euloge, Zongo Élisabeth Aboubié, Sossou Kpèdé Nicodème, Houngbo Marcel, Dossou Pierre Fourier, Ogoudjobi Ladékpo Sylvain, Balogoun Ibouraïman, Dansi Alexandre, Lokoyêyinou Laura Estelle, Int. J. Biosci. 28(1), 161-168, January 2026.

A severe case of human hepatic fascioliasis mimicking an oncological disease in Azerbaijan

Aygun A. Azizova*, Int. J. Biosci. 28(1), 155-160, January 2026.

Combined effect of irrigation frequency and leaf harvesting intensity on soil water content and productivity of baobab (Adansonia digitata) seedlings in vegetable production

Sissou Zakari, Imorou F. Ouorou Barrè, Mouiz W. I. A. Yessoufou*, Colombe E. A. E. Elegbe, Amamath S. Boukari, P. B. Irénikatché Akponikpè, Int. J. Biosci. 28(1), 143-154, January 2026.

Develop sustainable coffee-based farming model using cash crops production

Maribel L. Fernandez, Roje Marie C. Rosqueta*, Diosa G. Alasaas, Boyet C. Pattung, Jaylord Dalapo, Janette Empleo, Int. J. Biosci. 28(1), 134-142, January 2026.

Animal anthrax in northern Tanzania (2015-2025): Epidemiological trends and frontline response capacity

Yohana Michael Kiwone*, Beatus Lyimo, Rowenya Mushi, Joram Buza, Int. J. Biosci. 28(1), 123-133, January 2026.