Modelling the current and future distribution of Okoubaka aubrevillei Pellegr. & Normand under climate change scenarios in Côte d’Ivoire
Paper Details
Modelling the current and future distribution of Okoubaka aubrevillei Pellegr. & Normand under climate change scenarios in Côte d’Ivoire
Abstract
Okoubaka aubrevillei Pellegr. & Normand, listed as Endangered by the IUCN, Threatened by Aké Assi (PRE-Protected Rare Endemic list), and under CITES Appendix II (2023), is facing extinction. This study models its current and future distribution in Côte d’Ivoire to identify key environmental drivers and predict suitable habitats. Occurrence data were obtained from the GBIF database, and nineteen bioclimatic variables representing both current and future periods were used to model its potential distribution in Côte d’Ivoire. Seven algorithms (Random Forest, MaxEnt, BRT, GAM, GLM, SVM, and CART) were used, with data partitioned into 70% for training and 30% for validation to ensure robust predictive accuracy. Binary suitability maps (favorable/unfavorable) were produced from probability outputs in ArcGIS to assess habitat gains and losses under future (2050) climate scenarios. The results indicate that the potential distribution of O. aubrevillei is mainly driven by thermal variables, while hydric factors play a secondary but complementary role. The most influential predictors are bio6 (minimum temperature of the coldest month, 55.7 %), bio8 (mean temperature of the wettest quarter, 41.8 %), and bio3 (isothermality, 31.8 %), emphasising the species’ dependence on warm and moderately humid environments, with a preference for temperatures between 18-25 °C and moderate thermal variability. Hydric variables (bio11, bio14, bio15) reflect tolerance to sub-humid conditions and a minimum water requirement of 20-40 mm during the dry season. O. aubrevillei is a thermophilic species adapted to tropical environments with moderate humidity, whose ecological niche depends upon a balance between thermal stability and water availability. Currently restricted to southern forest zones, its distribution is projected to expand northward and into central regions by 2050, under both moderate and extreme climate scenarios. This potential expansion may be constrained by deforestation, habitat fragmentation, and anthropogenic pressure that affect the availability of suitable habitat.
Allouche O, Tsoar A, Kadmon R. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43(6), 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x
Ames-Martínez FN, Romero IC, Guerra A, Guillen JGI, Quispe-Melgar HR, Galeano E, Rodríguez-Ramírez EC. 2025. Climate change and tree cover loss affect the habitat suitability of Cedrela angustifolia: evaluating climate vulnerability and conservation in Andean montane forests. PeerJ 13, e18799. https://doi.org/10.7717/peerj.18799
Argaw T, Fenta BA, Assefa E. 2024. Application of factor analytic and spatial mixed models for the analysis of multi-environment trials in common bean (Phaseolus vulgaris L.) in Ethiopia. PLoS ONE 19(4), e0301534. https://doi.org/10.1371/journal.pone.0301534
Bagot JL. 2015. Okoubaka aubrevillei: un nouveau médicament pour les soins de support en cancérologie. La Revue d’Homéopathie 6(2), 46–51. http://dx.doi.org/10.1016/j.revhom.2015.03.005
Bargain A, Fabri MC. 2016. Guide méthodologique de modélisation prédictive d’habitats profonds en Méditerranée. Rapport Convention Cadre Agence de l’Eau RMandC / Ifremer, Provence Azur Corse. 128p.
Barros JRA, Angelotti F, Santos JDO, Silva RME, Dantas B, Melo NFD. 2020. Optimal temperature for germination and seedling development in cowpea seeds. Revista Colombiana de Ciencias Hortícolas 14(2), 231–239. https://doi.org/10.17584/rcch.2020v14i2.10339
Bede-Fazekas Á, Somodi I. 2024. Precipitation and temperature timings underlying bioclimatic variables rearrange under climate change globally. Global Change Biology 30(9), e17496. https://doi.org/10.1111/gcb.17496
Borokini TI. 2015. Okoubaka aubrevillei (Pelleg & Norman): a synthesis of existing knowledge for research and conservation in West and Central Africa. Journal of Biology and Life Sciences 6(1), 67–95. http://dx.doi.org/10.5296/jbls.v6i1.6399
Cadena-Iñiguez J, Barrera Guzmán LÁ, Arévalo Galarza MDLC, Cadena Zamudio DA, Watanabe KN, Arévalo Galarza GA, Aguirre Medina JF. 2023. Potential distribution modeling based on machine learning of Sechium edule (Jacq.) Sw. in Japan. Genetic Resources and Crop Evolution 71(5), 2105–2115. https://doi.org/10.21203/rs.3.rs-3243661/
da Silva JP, Hermoso V, Lopes-Lima M, Miranda R, Filipe AF, Sousa R. 2024. The role of connectivity in conservation planning for species with obligatory interactions: prospects for future climate scenarios. Global Change Biology 30(2), e17169. https://doi.org/10.1111/gcb.17169
Dimobe K, Ouédraogo K, Annighöfer P, Kollmann J, Bayala J, Hof C, Schmidt M, Goetze D, Porembski S, Thiombiano A. 2022. Climate change aggravates anthropogenic threats of the endangered savanna tree Pterocarpus erinaceus (Fabaceae) in Burkina Faso. Journal for Nature Conservation 70, 126299. https://doi.org/10.1016/j.jnc.2022.126299
Doffou SC, Kouadio H, Dibi HN. 2021. Effets des variations climatiques à l’horizon 2050 sur la distribution phytogéographique de Tieghemella heckelii Pierre ex A. Chev. (Sapotaceae) en Côte d’Ivoire. International Journal of Biological and Chemical Sciences 15(2), 679–694. https://doi.org/10.4314/ijbcs.v15i2.23
Dyola N, Sigdel SR, Liang E, Babst F, Camarero JJ, Aryal S, Peñuelas J. 2022. Species richness is a strong driver of forest biomass along broad bioclimatic gradients in the Himalayas. Ecosphere 13(6), e4107.
El-Khalafy MM, El-Kenany ET, Al-Mokadem AZ, Shaltout SK, Mahmoud AR. 2025. Habitat suitability modeling to improve conservation strategy of two highly-grazed endemic plant species in Saint Catherine Protectorate, Egypt. BMC Plant Biology 25(1), 485. https://doi.org/10.1186/s12870-025-06401-4
Erfanian MB, Barahoei H, Zeynali MM, Mirshamsi O. 2025. Employing habitat suitability modeling to assess the distribution and envenomation potential of scorpion species in Iran. Journal of Medical Entomology 62(2), 337–346. https://doi.org/10.1093/jme/tjae151
Fick SE, Hijmans RJ. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37(12), 4302–4315. https://doi.org/10.1002/joc.5086
Flores A, Flores-Ortíz CM, Dávila-Aranda PD, Rodríguez-Arévalo NI, Sampayo-Maldonado S, Cabrera-Santos D, Ulian T. 2024. The germination performance after dormancy breaking of Leucaena diversifolia (Schltdl.) Benth. seeds in a thermal gradient and its distribution under climate change scenarios. Plants 13(20), 2926. https://doi.org/10.3390/plants13202926
Ganglo JC. 2023. Ecological niche model transferability of the white star apple (Chrysophyllum albidum G. Don) in the context of climate and global changes. Scientific Reports 13(1), 2430. https://doi.org/10.1038/s41598-023-29048-3
Goethe University Frankfurt. 2025. Principaux facteurs environnementaux de la Côte d’Ivoire [Main environmental factors in Côte d’Ivoire]. Generic institutional report. Frankfurt am Main: Goethe University Frankfurt. https://www.goethe-university-frankfurt.de/50800998/Generic_50800998.pdf
Sié Fernand Pacôme Ouattara, Franck Placide Junior Pagny, Kouassi Bruno Kpangui, 2025. Modelling the current and future distribution of Okoubaka aubrevillei Pellegr. & Normand under climate change scenarios in Côte d’Ivoire. Int. J. Biosci., 27(5), 237-246.
Copyright © 2025 by the Authors. This article is an open access article and distributed under the terms and conditions of the Creative Commons Attribution 4.0 (CC BY 4.0) license.


