Foliar application of some macro and micro nutrients improves tomato growth, flowering and yield

Paper Details

Research Paper 01/10/2013
Views (698)
current_issue_feature_image
publication_file

Foliar application of some macro and micro nutrients improves tomato growth, flowering and yield

Sajid Ali, Hafiz Umer Javed, Rana Naveed Ur Rehman, Irfan Ali Sabir, Muhammad Salman Naeem, Muhammad Zeshan Siddiqui, Dawood Anser Saeed, Muhammad Amjad Nawaz
Int. J. Biosci. 3(10), 280-287, October 2013.
Copyright Statement: Copyright 2013; The Author(s).
License: CC BY-NC 4.0

Abstract

A field experiment was conducted to evaluate the possible effect of some macro and micro nutrients with different concentration levels as a foliar application on the vegetative growth, flowering, and yield of tomato cv ‘Roma’. The experiment was carried out under randomized complete block design (RCBD) with three replicates. The important parameters encompassed in the study were plant height (cm), number of leaves plant-1, leaf length (cm), days to flowering, number of flower clusters plant-1, fruit set percentage, small fruits plant-1, medium fruits plant-1, large fruits plant-1, length and width of fruit (cm), fruit weight (g), fruit yield plant-1 (kg), yield plot-1 (kg), and yield hectare-1. Although all the treatments showed a positive effect on growth, flowering, and yield but, T5 and T3 revealed most significant influence on all parameters under study as compared to T1 (control). Therefore, foliar application is an appropriate way to feed the tomato crop to enhance the growth, flowering and marketable yield.

Ali W, Jilani MS, Naeem N, Waseem K, Khan J, Ahmad MJ, Ghazanfarullah. 2012. Evaluation of different hybrids of tomato under the climatic conditions of Peshawar. Sarhad Journal of Agriculture 28(2), 207–212.

Anonymous. 2011. Agricultural Statistics of Pakistan. Govt. of Pakistan, Ministry of Food, Agriculture and Livestock Economic Wing, Islamabad, Pakistan.

Balley LH. 1999. Principles of vegetable cultivation. Discovery Pub., House, New Dehli, India, 910.

Davis JM, Sanders DC, Nelson PV, Lengnick L, Sperry WJ. 2003. Boron improves growth, yield, quality, and nutrients contents of tomato. Journal of American Society for Horticultural Science 128(3), 441–446.

Day SC. 2000. Tomato crop in vegetable growing. Agrobios, New Dehli, India, 59-61.

Ejaz M, Rehman SU, Waqas R, Manan A, Imran M, Bukhari MA. 2011. Combined efficacy of macro-nutrients and micro-nutrients as a foliar application on growth and yield of tomato grown by vegetable forcing. International Journal for Agro Veterinary and Medical Sciences 5(3), 327–335.

Harlan JR. 1992. Crops and Man. 2nd ed. American Society of Agronomy, Crop Sciences of America, Madison, WI.

Kuepper G. 2003. Foliar Fertilization. ATTRA (Appropriate Technology Transfer for Rural Areas). Available online at http//www.attra.ncat.org.

Mallick MFR, Muthukrishnan CR. 1980. Effect of micro nutrients on tomato (Lycopersicon esculentum Mill.), II. Effect on flowering, fruit set and yield. South Indian Horticulture 28 (1), 14–20.

Mehdizadeh M, Darbandi EI, Naseri-Rad H, Tobeh A. 2013. Growth and yield of tomato (Lycopersicon esculentum Mill.) as influenced by different organic fertilizers. International Journal of Agronomy and Plant Production 4(4), 734–738.

Naz F, Haq IU, Asghar S, Shah AS, Rahman A, 2011. Studies on growth, yield and nutritional composition of different tomato cultivars in Battal Valley of District Mansehra, Khyber Pakhtunkhwa, Pakistan. Sarhad Journal of Agriculture 27(4), 569– 571.

Naz RMM, Muhammad S, Hamid A, Bibi F. 2012. Effect of boron on the flowering and fruiting of tomato. Sarhad Journal of Agriculture 28(1), 37–40.

Nonnecke IBL.1989. Vegetable Production. Avi Book Publishers. New York, USA, 200-229.

Obi ME, Ebo P. 1995. The effect of organic and inorganic  amendments  on  soil  physical  properties and production in a severely degraded sandy soil in southern Nigeria. Bioresource Technology 51(2–3), 117–123. http://dx.doi.org/10.1016/0960-8524(94)00103-8

Oikeh SO, Asiegbu JE. 1993. Growth and yield responses of tomatoes to sources and rates of organic manures in ferralitic soils. Bioresource Technology, 45(1), 21–25. http://dx.doi.org/10.1016/0960-8524(93)90138-2

Singh HM, Tiwari JK. 2013. Impact of micronutrient spray on growth, yield and quality of tomato (Lycopersicon esculentum Mill). HortFlora Research Spectrum. 2(1), 87–89.

Steel RGD, Torrie JH, Dicky DA. 1997. Principles and procedures of statistics: A biological approach, 3rd ed. McGraw Hill Book Co., New York.

Tariq M, Mott CJB. 2007. Effect of boron on the behavior of nutrients in soil-plant system. Asian Journal of Plant Science. 6(1), 195–202.

Upendra M, Dris SR, Singh B. 2003. Mineral nutrition of tomato. Journal of Food, Agriculture and Environment 1(2), 176–183.

Williams LB, Harris G. 1986. Fertilizer marketing in Nigeria. Fertilizer International 225, 45–49.

Yafan H, Barker AV. 2004. Effect of composts and their combinations with other materials and their combinations with other materials on nutrient accumulation in tomato leaves. Communications in Soil Science and Plant Analysis 35(19–20), 2809– 2823.

Related Articles

Integrated in silico and in vitro analyses reveal E-cadherin crosstalk and TF: FVIIa complex-mediated trophoblast motility via MEK/JNK activation

Kirthika Manoharan, Jagadish Krishnan, Vijaya Anand Arumugam, Shenbagam Madhavan*, Int. J. Biosci. 27(6), 136-144, December 2025.

Effect of flooding depth and harvest intensity on soil moisture dynamics and production of baobab (Adansonia digitata) seedlings

Sissou Zakari, Pierre G. Tovihoudji, Mouiz W. I. A. Yessoufou, Sékaro Amamath Boukari, Vital Afouda, Imorou F. Ouorou Barrè, Int. J. Biosci. 27(6), 127-135, December 2025.

Local food processing and associated hygienic quality in greater Lomé, Togo: Traditional cooked corn-based dough akpan wrapped in M. cuspidata, M. mannii and M. purpurea species leaves

Mamy Eklou, Komlan Edjèdu Sodjinou, Kodjo Djidjolé Etse, Awidèma Adjolo, Benziwa Nathalie Johnson, Bayi Reine Dossou, Yaovi Ameyapoh, Raoufou Radji, Akossiwoa M-L Quashie, Int. J. Biosci. 27(6), 114-126, December 2025.

Improving the microbiological quality of spices and spice blends using treatments accessible to SMEs/SMIs

Pingdwindé Marie Judith Samadoulougou-Kafando, Korotimi Traoré, Crépin Ibingou Dibala, Aboubacar Sidiki Dao, Josias Nikiema, Idrissa Taram, Adama Pare, Inoussa Salambéré, Donatien Kaboré, Charles Parkouda, Int. J. Biosci. 27(6), 102-113, December 2025.

Twin-row planting practice in village sugarcane (Saccharum officinarum L.) plantations during first ratoon under rainfed conditions in northern Côte d’Ivoire

Allé Yamoussou Joseph, Sawadogo Fatima, Traoré Mohamed Sahabane, Fondio Lassina, Int. J. Biosci. 27(6), 91-101, December 2025.

Prevalence of dengue infection in Delta State, Nigeria

P. A. Agbure, O. P. G. Nmorsi, A. O. Egwunyenga, Int. J. Biosci. 27(6), 82-90, December 2025.

Evaluation of silage quality of three sorghum varieties using in livestock systems of Burkina Faso

Barkwendé Jethro Delma, François Tapsoba, Nabèrè Ouattara, Gildas Marie Louis Yoda, Int. J. Biosci. 27(6), 72-81, December 2025.