Effect of Piriformospora indica on antioxidant enzymes activity of tomato (Lycopersicon esculentum Mill) under lead stress

Paper Details

Research Paper 01/12/2013
Views (387) Download (16)
current_issue_feature_image
publication_file

Effect of Piriformospora indica on antioxidant enzymes activity of tomato (Lycopersicon esculentum Mill) under lead stress

Nasrin Sartipnia, Ramazan-Ali Khavari-Nejad, Valiollah Babaeizad, Taher Nejad-Sattari, Farzaneh Najafi
Int. J. Biosci.3( 12), 55-64, December 2013.
Certificate: IJB 2013 [Generate Certificate]

Abstract

The endomycorrhizal fungus Piriformospora indica is well known for inducing disease resistance, elevation of salt tolerance and increasing biomass in symbiotic plants. The aim of the present study is to evaluate the effect of P. indica on tomato (Lycopersicon esculentum Mill) under lead stress (Concentrations of 1 and 2 mM Pb (NO3)‌2). Lead (Pb) is not an essential nutrient for plants and is known as a hazardous pollutant in the environment which originates from various sources. In this study, the effect of lead toxicity and P. indica on antioxidant enzyme activities in both mycorrhizal (MR) and non-mycorrhizal (NMR) tomato plants were investigated. The experiment was performed by using six treatments (mycorrhizal and non-mycorrhizal with and without lead stress) and two concentrations of Pb (1and 2 mM Pb (NO3)2 solution) and then antioxidant enzyme activities (CAT, SOD and APX) in roots and stems of plants were determined. The results demonstrated that lead could affect the activity of antioxidant enzymes in treating plants. As well, in most cases, the rates of the enzyme activities were higher in roots than those of stems, but the impact Pb treatment on enzyme activities in P. indica colonized plants was not significant.

VIEWS 14

Alguacil  MM, Caravaca  F, Azcón  R, Pera  J, Díaz G, Roldán A. 2003. Improvements in soil quality and performance of mycorrhizal Cistusalbidus L. seedlings resulting from  addition of microbially treated sugar  beet residue to a degraded semiarid Mediterranean soil. Soil Use and Management  19, 277-283. http://dx.doi.org/10.1111/j.14752743.2003.tb00316.x

Alscher RG, Erturk N, Heath LS. 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Jounal of Experimental Botany 53, 1331–1341. http://dx.doi.org/10.1093/jexbot/53.372.1331

Amatussalam A, Abubacker MN, Rajendran RB. 2011. In situ Carica papaya stem matrix and Fusarium oxysporum (NCBT-156) mediated bioremediation of chromium. Indian Journal of Experimental Biology 49 , 925-931.

Beauchamp C, Fridovich I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 44, 276–287. http://dx.doi.org/10.1016/0003-2697(71)90370-8

Bohnert HJ, Nelson DE, Jensen RG. 1995. Adaptations to environmental stresses. The Plant Cell 7(7), 1099–1111.

Borde M, Dudhane M, Jite PK. 2009. Role of bioinoculant (AM fungi) increasing in growth, flavor content and yield in Allium sativum L. under field condition. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 37, 124-128.

Bowler C, Van Montagu M, Inze D. 1992. Superoxide dismutase and stress tolerance. Annual Reviews Plant Physiology and Plant Molecular Biology 43, 83–116. http://dx.doi.org/10.1146/annurev.pp.43.060192.00 0503

Cakmak I, Horst WJ. 1991.Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean (Glycine max). Physiologia Plantarum 83, 463-469. http://dx.doi.org/10.1111/j.1399-3054.1991.tb00121.x

Chongpraditnum P, Mori S, Chino M. 1992. Excess copper induces a cytosolic Cu, Zn-superoxide dismutase in soybean root. Plant & Cell Physiology 33, 239–244.

Clay K, Schardl CL. 2002. Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. American Naturalist 160, S99–S127. http://dx.doi.org/10.1086/342161

Devi SR, Prasad MNV. 1998. Copper toxicity in Ceratophyllum demersum L. (coontail), a free-floating macrophyte: response of antioxidant enzymes and antioxidants. Plant Science 138, 157–165. http://dx.doi.org/10.1016/S0168-9452(98)00161-7

Dumas Y, Dadomo M, Di lucca G, Grolier P. 2003. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. Journal of the Science of Food and Agriculture 83, 369-382. http://dx.doi.org/.10.1002/jsfa.1370

Eick MJ, Peak JD , Brady PV and Pesek JD. 1999. Kinetics of lead absorption/desorption on goethite: residence time effect. Soil Science 164, 28– 39.

Ekmekci Y, Tanyolac D, Ayhan B. 2009. A crop tolerating oxidative stress induced by excess lead: maize. Acta Physiology Plantarum 31, 319–330. http://dx.doi.org/.10.1007/s11738-008-0238-3

El-BeltagiHossam S, Farahat Ahmed A, AlsayedAlsayed A, MahfoudNomer A. 2012. Response of Antioxidant Substances and Enzymes Activities as a Defense Mechanism against Root-Knot Nematode Infection. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 40(1), 132-142.

Garg N, Aggarwal N. 2012. Effect of mycorrhizal inoculations on heavy metal uptake and stress alleviation of Cajanus cajan (L.) Millsp. genotypes grown in cadmium and lead contaminated soils. Plant Growth Regulation 66, 9–26. http://dx.doi.org/10.1007/s10725-011-9624-8

Gil C, Boluda R, Ramos J. 2004. Determination and evaluation of cadmium lead and nickel in greenhouse  soils  of  Almeria  (Spain).  Chemosphere 55, 1027–1034.http://dx.doi.org/10.1016/j.chemosphere.2004.01.013

Gupta DK, Nicolosoa FT, Schetingerb MRC, Rossatoa LV, Pereirab LB, Castroa GY, Srivastavac S, Tripathi RD. 2009. Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. Journal of Hazardous Materials 172, 479–484. http://dx.doi.org/10.1016/j.jhazmat.2009.06.141.

Kabata A, Pendias H. 1984. Trace elements in soils and plants. CRC Press, Florida, 218 p.

Kumar M, Yadav V, Tuteja N, Johri AK. 2009. Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. Microbiology 155, 780–790. http://dx.doi.org/10.1099/mic.0.019869-0

Luna CM, Gonzalez VS, Trippi VS. 1994. Oxidative damage caused by excess copper in oat leaves. Plant & Cell Physiology 35, 11–15.

Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant & Cell Physiology 22, 867-880.

Peralta IE, Spooner DM, Knapp S. 2008. The Taxonomy of tomatoes: a revision of wild tomatoes (Solanum section Lycopersicon) and their outgroup relatives in sections Juglandifolium and Lycopersicoides. Systematic Botany Monographs 84, 1-186.

Piechalak A, Tomaszewska B, Baralkiewicz D. 2003. Enhancing phytoremediative ability of Pisum sativum by EDTA application. Phytochemistry 64, 1239–1251. http://dx.doi.org/10.1016/S00319422(03)00515-6

Porras-Alfaro A, Bayman P. 2011. Hidden fungi, emergent properties: endophytes and microbiomes. Annual Review of Phytopathology 49, 291-315. http://dx.doi.org/10.1146/annurev-phyto-080508-081831

Reddy AM, Kumar SG, Jyonthsnakumari G, Thimmanaik S, Sudhakar C. 2005. Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere 60, 97–104. http://dx.doi.org/10.1016/j.chemosphere.2004.11.09 2

Rivera-Becerril     F, Van Tuinen        D, Martin- Laurent F, Metwally  A, Dietz KJ, Gianinazzi S,  Gianinazzi-Pearson   V. 2005.  Molecular changes in   Pisumsativum   L. roots   during arbuscularmycorrhiza  buffering  of  cadmium  stress. Mycorrhiza 16, 51–60. http://dx.doi.org/10.1007/s00572-005-0016-7

Shahabivand S, ZareMaivan H, Mohammadi Goltapeh E, Sharifi M, Aliloo AA. 2012. The effects of root endophyte and arbuscular mycorrhizal fungi on growth and cadmium accumulation in wheat under cadmium toxicity. Plant Physiology and Biochemistry 60, 53-58. http://dx.doi.org/10.1016/j.plaphy.2012.07.018

Singh LP, Gill SS, Tuteja N. 2011. Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signaling & Behaviour 6, 175-191. http://dx.doi.org/104161/psb.6.2.14146

Souguir D, Ferjani E, Ledoigt G, Pascale G. 2011. Sequential effects of cadmium on genotoxicity and lipoperoxidation in Viciafaba roots. Ecotoxicology 20, 329–336. http://dx.doi.org/10.1007/s10646-010-0582-0

Sun C, Johnson JM, Cai D, Sherameti I, Oelmuller R, Lou B. 2010.‌Piriformospora indica confers drought tolerance in Chinese cabbage leaves by‌stimulating antioxidant enzymes, the expression of drought-related genes and the‌ plastid-localized CAS protein. Journal of Plant Physiology 167, 1009-1017. http://dx.doi.org/10.1016/j.jplph.2010.02.013

Varma A, Singh A, Sudha Sahay N, Sharma J, Roy A, Kumari M, Rana D, Thakran S, Deka D, Bharti K, Franken P, Hurek T, Blechert O, Rexer K-H, Kost G, Hahn A, Hock B, Maier W, Walter M, Strack D, Kranner I. 2001. Piriformospora indica: acultivable mycorrhiza-like endosymbiotic fungus. The Mycota IX 9, 125–150. http://dx.doi.org/10.1007/978-3-662-07334-6_8

Verma  S, Dubey  RS. 2003. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing  rice  plants. Plant Science 164, 645–655. http://dx.doi.org/10.1016/S0168-9452(03)00022-0

Vierheilig H, Schweiger P, Brundrett M. 2005. An overview of methods for the detection and observation of arbuscular mycorrhizal fungi in roots. Physiologia Plantarum 125, 393–404. http://dx.doi.org/10.1111/j.1399-3054.2005.00564.x

Wang P, Zhang S, Wang C, Lu J. 2012. Effects of‌Pb‌on‌the‌oxidative‌stress‌and‌antioxidant‌response‌ in‌ a‌ Pb Bioaccumulator‌ plant Vallisneria natans. Ecotoxicology and‌ Environmental‌ Safety 78, 28–34. http://dx.doi.org/10.1016/j.ecoenv.2011.11.008