A study on physiological, anatomical characterization of selected carrot plant under different treatments of salts

Paper Details

Research Paper 01/07/2020
Views (630)
current_issue_feature_image
publication_file

A study on physiological, anatomical characterization of selected carrot plant under different treatments of salts

Minahal Akram, Muhammad Abu Bakar, Uzma Nasrullah, Shamsa Bano, Azqa Nawaz, Shazia Parveen, Muheb Ul Nabi, Rana Zeeshan Zulfiqar, Sumera, Saadia Bashir, Safina
J. Biodiv. & Environ. Sci. 17(1), 123-1129, July 2020.
Copyright Statement: Copyright 2020; The Author(s).
License: CC BY-NC 4.0

Abstract

Carrots were first used for medical purposes and gradually used as food. It is also a good source of magnesium and manganese. Cadmium is a nonessential element that adversely affects plant growth and development. It is considered as one of the significant pollutants due to its high toxicity and more solubility in water. Experiment was conducted in Old Botanical Garden of University of Agriculture Faisalabad to check the response of carrot genotypes grown under Cadmium Chloride stress (0µM, 10µM, 15µM and 20µM). Variety of carrot (gajar) used was Red Gold. Seeds were sown in 12 pots, which were filled with sand, in 2nd week of November. Germination observed after one week of sowing. The experiment was laid out in a completely randomized design with three replicates. Seeds of carrot (red gold) were purchased from Ayyub Agriculture Research Institute (AARI) Faisalabad and sown directly in the plastic pot. 8 seeds per pot were distributed. Hogland solution was also applied to replicates and then I applied Cadmium Chloride stress to the plants to start my experiment. Cadmium stress decreased the uptake and distribution of essential elements in plant. Studies had revealed that heavy metals cause adverse effects on plant growth, which further lead to decrease plant yield and inhibition of enzymatic activities.In the present study, plant growth characteristics, root length and shoot length decreased under Cd stress. In fact, salt stress decreased all attributes in carrot when the concentrations of Cadmium chloride increased higher and higher.

Abberton M, Batley J, Bentley A. 2016. Global agricultural intensification during climate change: a role for genomics. Plant biotechnology journal 14(2), 1095-1098.

Adomas A, Heller G, Olson A, Osborne J, Karlsson M, Nahalkova J, Van Zyl L, Sederoff R, Stenlid J, Finlay R, Asiegbu FO. 2008. Amp;quot;Comparative analysis of transcript abundance in Pinus Sylvester’s after challenge with a saprotrophic, pathogenic or mutualistic fungus &quot. Tree Physiol 28(6), 885–897.

Bainbridge KS, Kuhlemeier C. 2008. Auxin influx carriers stabilize phyllotactic patterning. Genes development 22, 810-823.

Baker M. 2011. Synthetic genomes: The next step for the synthetic genome & amp; quot. Nature 473 (7347), 403

Bardhan IR, Thouin MF. 2013. Health information technology and its impact on the quality and cost of healthcare delivery. Decision Support Systems 55, 438-449.

Cheng Y, Zhao Y. 2007. A role for auxin in flower development. Journal of integrative plant biology 49, 99-104.

Cooke TJ, Poli D, Cohen JD. 2004. Did auxin play a crucial role in the evolution of novel body plans during the Late Silurian-Early Devonian radiation of land plants?, in The evolution of plant physiology. Elsevier 55, 85-107.

Li T. 2019. Calcium signals are necessary to establish auxin transporter polarity in a plant stem cell niche. Nature communications 10, 1-9.

Meng F, Xiang D, Zhu J. 2019. Molecular mechanisms of root development in rice. Rice 12, 1-10.

Van S. 2012. Simulation of organ patterning on the floral meristem using a polar auxin transport model. PloS one 7, 155-159.

Related Articles

Overemphasis on blue carbon leads to biodiversity loss: A case study on subsidence coastal wetlands in southwest Taiwan

Yih-Tsong Ueng, Feng-Jiau Lin, Ya-Wen Hsiao, Perng-Sheng Chen, Hsiao-Yun Chang, J. Biodiv. & Environ. Sci. 27(2), 46-57, August 2025.

An assessment of the current scenario of biodiversity in Ghana in the context of climate change

Patrick Aaniamenga Bowan, Francis Tuuli Gamuo Junior, J. Biodiv. & Environ. Sci. 27(2), 35-45, August 2025.

Entomofaunal diversity in cowpea [Vigna unguiculata (L.) Walp.] cultivation systems within the cotton-growing zone of central Benin

Lionel Zadji, Roland Bocco, Mohamed Yaya, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, J. Biodiv. & Environ. Sci. 27(2), 21-34, August 2025.

Biogenic fabrication of biochar-functionalized iron oxide nanoparticles using Miscanthus sinensis for oxytetracycline removal and toxicological assessment

Meenakshi Sundaram Sharmila, Gurusamy, Annadurai, J. Biodiv. & Environ. Sci. 27(2), 10-20, August 2025.

Bacteriological analysis of selected fishes sold in wet markets in Tuguegarao city, Cagayan, Philippines

Lara Melissa G. Luis, Jay Andrea Vea D. Israel, Dorina D. Sabatin, Gina M. Zamora, Julius T. Capili, J. Biodiv. & Environ. Sci. 27(2), 1-9, August 2025.

Effect of different substrates on the domestication of Saba comorensis (Bojer) Pichon (Apocynaceae), a spontaneous plant used in agroforestry system

Claude Bernard Aké*1, Bi Irié Honoré Ta2, Adjo Annie Yvette Assalé1, Yao Sadaiou Sabas Barima1, J. Biodiv. & Environ. Sci. 27(1), 90-96, July 2025.

Determinants of tree resource consumption around Mont Sangbé national park in western Côte d’Ivoire

Kouamé Christophe Koffi, Serge Cherry Piba, Kouakou Hilaire Bohoussou, Naomie Ouffoue, Alex Beda, J. Biodiv. & Environ. Sci. 27(1), 71-81, July 2025.