Yield response of upland Rice + Peanut intercropping schemes to Rhizobial (Bio-N) inoculation

Paper Details

Research Paper 01/01/2019
Views (708)
current_issue_feature_image
publication_file

Yield response of upland Rice + Peanut intercropping schemes to Rhizobial (Bio-N) inoculation

MSA Jona Longat Asuncion
Int. J. Biosci. 14(1), 484-494, January 2019.
Copyright Statement: Copyright 2019; The Author(s).
License: CC BY-NC 4.0

Abstract

This research was conducted during the dry season to evaluate the intercropping schemes in peanut and Rhizobial inoculation. The study aimed to compare the growth and yield performance of Rhizobium inoculated upland rice and peanut, to determine the land productivity through Land Equivalent Ratios, determine the nitrogen level of the soil per treatment before and after the conduct of the study and do a simple analysis on the cost and returns using the different intercropping schemes and inoculation. Two- Factorial in RCBD was used in evaluating the effects of Factor A (inoculation) and Factor B (intercropping pattern). Rice yield parameters like plant height, herbage yield, and yield per plot in rice are not significantly affected by cropping pattern and Rhizobial inoculation. There was a significant effect in number of tillers. In peanut, cropping pattern and inoculation affected pod yield per plot and hay yield. The combined yield of peanut and upland rice was significantly in T1: inoculated 1R: 3P over the monoculture. Using LER as index of productivity, 2R:2P without inoculation produce the highest LER at 1.92. There was an appreciable improvement in the Nitrogen content of the experimental plots after the conduct of the study. Considering higher ROI, it is recommended to follow 1R:3P with inoculation and monocrop peanut with inoculation. The use of multiple cropping is obviously beneficial as when one crop fails, there is still another crop from which the farmer could derive income as in the case of rice.

Chu GX, Shen QR, Cao JL. 2004. Nitrogen fixation and N transfer from peanut to rice cultivated in aerobic soil in an intercropping system and its effect on soil N fertility. Plant and Soil 263, 17–27, 2004. © 2004 Kluwer Academic Publishers. Printed in the Netherlands.

Francis CA. 1986. Multiple cropping systems. Macmillan Publishing Company.

Kaiming Liang, Tao Yang, Shaobin Zhang, Jia-en Zhang, Mingzhu Luo, Ling Fu & Benliang Zhao. 2016. Effects of intercropping rice and water spinach on net yields and pest control: an experiment in southern China, International Journal of Agricultural Sustainability 14(4), 448-465.

Li L, Zhang LZ, Zhang FS. 2013. Crop Mixtures and the mechanisms of overyielding. In:, Levin SA, editors., Encyclopedia of biodiversity, second edition, Waltham, MA: Academic Press. Volume 2, pp. 382–395.

Magulod GC. 2018. Climate change awareness and environmental attitude of College students in one campus of a State University in the Philippines. J. Bio. Env. Sci 12(2), 211-220, February 2018.

Morris R, Garrity D. 1993. Resource capture and utilization in intercropping; non-nitrogen nutrients. Field Crops Research 34, 319–334.

Morris R, Garrity DP. 1993. Resource capture and utilization in intercropping: Water. Field Crops Research 34, 303–317. 13.

Vandermeer JH. 1992. The ecology of intercropping. Cambridge University Press.

Wang ZG, Jin X, Bao XG, Li XF, Zhao JH. 2014. Intercropping Enhances Productivity and Maintains the Most Soil Fertility Properties Relative to Sole Cropping. PLoS ONE 9(12), e113984. doi:10.1371/ journal.pone. 0113984

Related Articles

Characteristics of symbiotic relationships between plants and bacteria and the influence of stress factors on them

Konul F. Bakhshaliyeva, Navai D. İmamquliyev, Mehpara İ. Gasımova, Sevda M. Muradova, Panah Z. Muradov*, Int. J. Biosci. 28(2), 75-90, February 2026.

In the line of fire: Unmasking the institutional challenges in the bureau of fire protection

Mhelen Grace F. Libre, Nancy E. Aranjuez*, Int. J. Biosci. 28(2), 53-74, February 2026.

One health approch: Diversity of domestic larval habitats and human responsibility in mosquito proliferation in Bobo-Dioulasso (Burkina Faso)

Zouéra Laouali, Kouamé Wilfred Ulrich Kouadio, Moussa Namountougou*, Int. J. Biosci. 28(2), 38-52, February 2026.

Linkages between land use change, flooding, and water quality in the Pallikaranai Marshland, Chennai, India

Arunpandiyan Murugesan, Roshy Ann Mathews, Aarthi Mariappan, J. Ranjansri, Rajakumar Sundaram, Prashanthi Devi Marimuthu*, Int. J. Biosci. 28(2), 28-37, February 2026.

Nutritional and phytochemical characteristics of Garcinia afzelii fruit

Doumbia Fanta*, Dje Kouakou Martin, Kone Daouda, Silue Sana Etienne, Kouame Lucien Patrice , Int. J. Biosci. 28(2), 17-27, February 2026.

Sensory evaluation of horn snail (Telescopium telescopium) patty

Ma. Isabel P. Lanzaderas, Gilbert P. Panimdim, Proceso C. Valleser Jr.*, Int. J. Biosci. 28(2), 7-16, February 2026.

Two years evolution of deltamethrin, malathion and pirimiphos-methyl resistance in Aedes aegypti from urban in peri urban sites of Ouagadougou, Burkina Faso

Hyacinthe K. Toe*, Moussa W. Guelbeogo, Soumananaba Zongo, Aboubacar Sombie, Athanase Badolo, Int. J. Biosci. 28(2), 1-6, February 2026.

Physicochemical characterization of annatto seeds (Bixa orellana) sold in Ouagadougou and their oils extracted using chemical processes

Mah Alima Esther Traoré*, Adama Lodoun, Pingdwindé Marie Judith Samadoulougou-Kafando, Nestor Beker Dembélé, Kiswendsida Sandrine Léticia Dayamba, Charles Parkouda, Int. J. Biosci. 28(1), 169-178, January 2026.