Synthesis of silver nanoparticles from curry, neem leaves, Citrobacter and its antimicrobial characterization against Staph and Proteus

Paper Details

Research Paper 01/03/2019
Views (1062)
current_issue_feature_image
publication_file

Synthesis of silver nanoparticles from curry, neem leaves, Citrobacter and its antimicrobial characterization against Staph and Proteus

Inam Ullah, Hameed Ur Rehman, Feroz Khan
Int. J. Biosci. 14(3), 140-146, March 2019.
Copyright Statement: Copyright 2019; The Author(s).
License: CC BY-NC 4.0

Abstract

Nanotechnology is the study and application of very small particles and may be used in different opposite fields namely biology, physics, chemistry, engineering and materials science. The silver nanoparticles (Ag-NPs) have fascinated growing interest because of their different biological and physiochemical properties and in between 1-100 nm of size. The purpose of current study was to investigate the synthesis of silver nano particles from Curry, Neem leaves, Citrobacter and checks its antimicrobial activity against Staph and Proteus. We have taken 2 samples of different plants made extract and synthesized the silver nano particles from Curry, Neem extract and microorganism. The higher values were recorded for Curry, Neem leaves extract and Citrobacter from 350 to 450 wavelengths respectively by the graphs. The current findings were concluded that the Curry, Neem leaves extract and Citrobacter play an important role inside the reduction and stabilization of silver to silver nanoparticles. It is utilized in several medicines and cosmetics etc, because it has conductive and optical properties.

Ahmed S, Ahmad MS, Swami LB, Ikram S. 2015. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. Journal of Radiation Research and Applied Sciences, 1-7. http://dx.doi.org/10.1016/j.jrras.

Sajeshkumar NK, Vazhacharickal JP, Mathew JJ, Sebastin A. 2015. Synthesis of silver nano particles from Curry leaf (Murraya koenigii) extract and its antibacterial activity. Journal of Pharmaceutical Sciences 4(2), 15-25.

Syafiuddin A, Salmiati Salim RM, Kueh HBA, Tony Hadibarata T, Nur H. 2017. A Review of Silver Nanoparticles: Research Trends, Global Consumption, Synthesis, Properties, and Future Challenges. Weinheim Journal of the Chines Chemical Society 64, 732–756.

Verma A, Mehata SM. 2016. Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity. Journal of Radiation Research and Applied Sciences, 109-115. http://creativecommons.org/licenses/by-nc-nd/4.0/

Saeb MTA, Ahmad S, Alshammari Al-Brahim H, Al-Rubeaan1 AK. 2014. Production of Silver Nanoparticles with Strong and Stable Antimicrobial Activity against Highly Pathogenic and Multidrug Resistant Bacteria. Scientific World Journal, 1-9. http://dx.doi.org/10.1155/2014/704708.

Renisheya JJ, Malar T, Johnson M, Mary U. M, Arthy A. 2011. Antibacterial activities of ethanolic extracts of selected medicinal plants against human pathogens. Asian Pacific Journal Tropical Biomedicine 76-78.

Lok NC, Ho MC, Chen R, He QY, Yu YW, Sun H, Tam HKP, Chiu FJ, Che MC. 2007. Silver nanoparticles: partial oxidation and antibacterial activities. Journal of Biological Inorganic Chemistry, 12, 527–534. http://dx.doi.org/10.1007/s00775-007-0208-z.

Christensen L, Vivekanandhan S, Misra, Mohanty AK. 2011. Biosynthesis of silver nanoparticles using Murraya koenigii (Curry Leaf): an investigation on the effect of broth concentration in reduction mechanism and particle size. Advanced Materials Letters 2(6), 429-434.

Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramfrez JT, Yacaman MJ. 2005. The bactericidal effect of silver nano particles. Nanotechnology 16(10), 2346–2353.

Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N. 2010. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids and Surfaces B. Biointerfaces, 76(1), 50–56.

Related Articles

Response of different soybean varieties to phosphorus fertilizer microdosing and rhizobium inoculation in the sub-humid zone of Northern Benin

Pierre G. Tovihoudji*, Kamarou-Dine Seydou, Lionel Zadji, Sissou Zakari, Valerien A. Zinsou, Int. J. Biosci. 27(6), 201-213, December 2025.

On-farm validation of black soldier fly larvae meal as a sustainable replacement for shrimp meal in rainbow trout diets in the mid hills of Nepal

Ishori Singh Mahato, Krishna Paudel*, Sunita Chand, Anshuka Bhattarai, Int. J. Biosci. 27(6), 189-200, December 2025.

Insect fauna associated with Cucumis sativus (Cucurbitales: Cucurbitaceae) in Parakou, A cotton-growing area of central Benin

Lionel Zadji*, Mohamed Yaya, Roland Bocco, Prudencia M. Tovignahoua, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, Hugues Baimey, Leonard Afouda, Int. J. Biosci. 27(6), 175-188, December 2025.

First record of two hymenopteran species, Brachymeria excarinata Gahan (Chalcididae) and Pteromalus sp. (Pteromalidae), as hyperparasitoids of Diadegma insulare in Senegal

Babacar Labou*, Etienne Tendeng, Mamadou Diatte, El hadji Sérigne Sylla, Karamoko Diarra, Int. J. Biosci. 27(6), 167-174, December 2025.

Hepatoprotective and antinociceptive effects of terpinolene in streptozotocin-induced diabetic peripheral neuropathic rats

Ravishankar Sarumathi, Muthukumaran Preethi, Chandrasekaran Sankaranarayanan*, Int. J. Biosci. 27(6), 156-166, December 2025.

Agromorphological characterization of six promising bambara groundnut [Vigna subterranea (L.) Verdc.] genotypes under selection in Burkina Faso

Adjima Ouoba*, Ali Lardia Bougma, Dominique Nikiéma, Mahamadi Hamed Ouédraogo, Nerbéwendé Sawadogo, Mahama Ouédraogo, Int. J. Biosci. 27(6), 145-155, December 2025.

Integrated in silico and in vitro analyses reveal E-cadherin crosstalk and TF: FVIIa complex-mediated trophoblast motility via MEK/JNK activation

Kirthika Manoharan, Jagadish Krishnan, Vijaya Anand Arumugam, Shenbagam Madhavan*, Int. J. Biosci. 27(6), 136-144, December 2025.

Effect of flooding depth and harvest intensity on soil moisture dynamics and production of baobab (Adansonia digitata) seedlings

Sissou Zakari, Pierre G. Tovihoudji, Mouiz W. I. A. Yessoufou, Sékaro Amamath Boukari, Vital Afouda, Imorou F. Ouorou Barrè, Int. J. Biosci. 27(6), 127-135, December 2025.