A review on different diseases due to human gut microbiota dysbiosis

Paper Details

Review Paper 01/07/2021
Views (574) Download (24)
current_issue_feature_image
publication_file

A review on different diseases due to human gut microbiota dysbiosis

Afsheen Rafiq, Tazeem Zahra, Sajid Ali, Adnan Shahid, Muhammad Iqbal, Aurangzaib Ijaz, Muhammad Ahmed Mushtaq
J. Bio. Env. Sci.19( 1), 1-10, July 2021.
Certificate: JBES 2021 [Generate Certificate]

Abstract

Microbes are present everywhere on earth. These are present either inside or outside the body. Microorganisms are found in urinary tract, vagina, gut, nasal cavity, oral cavity and many other parts of body as well. These microbes are beneficial as well as harmful for us. Beneficial microbes can regulate different body mechanisms and sometimes they can convert into pathogenic microbes. Human gut microbiota is necessary in keeping the brain healthy as well as it also maintains the physical health of humans. Microbiota of human gut is made up of complex community of microorganisms that respond in healthy metabolic processes and develop immune responses, but sometimes gut microbiota can be disturbed by different external and internal factors for example antibiotics, more lipid diet, and stress that can cause alteration in gut microbiota. So pathogenic microbes accumulate and release different toxins that cause various diseases such as Alzheimer’s Disease, colorectal cancer, cardiovascular diseases, obesity, Clostridium difficile infection, Inflammatory bowel disease, etc. The dysbiosis in human gut microbes is due to release of different toxins from pathogenic bacteria which are converted from beneficial bacteria by internal and external factors. If we will not control these factors it can also change the gene expression and will infect the next generations too. We can prevent these diseases by less use of antibiotics and by taking proper healthier diet it will help in maintenance of normal flora of body.

VIEWS 43

A Kohler C, Maes M, Slyepchenko A, Berk M, Solmi ML, Lanctôt KF, Carvalho A. 2016. The gut-brain axis, including the microbiome, leaky gut and bacterial translocation: mechanisms and pathophysiological role in Alzheimer’s disease. Current pharmaceutical design 22(40), 6152-6166.

Akira S, Hemmi H. 2003. Recognition of pathogen-associated molecular patterns by TLR family. Immunology letters 85(2), 85-95.

Aron-Wisnewsky J, Doré J, Clement K. 2012. The importance of the gut microbiota after bariatric surgery. Nature reviews Gastroenterology & hepatology 9(10), 590.

Bagyinszky E, Van Giau V, Shim K, Suk K, An SSA, Kim S. 2017. Role of inflammatory molecules in the Alzheimer’s disease progression and diagnosis. Journal of the neurological sciences 376, 242-254.

Barrett E, Ross RP, O’toole PW, Fitzgerald GF, Stanton C. 2012. γ‐Aminobutyric acid production by culturable bacteria from the human intestine. Journal of applied microbiology 113(2), 411-417.

Baumgart DC, Carding SR. 2007. Inflammatory bowel disease: cause and immunobiology. Lancet 2007; 369: 1627-40. Baumgart DC, Carding SR. Inflammatory bowel disease: cause and immunobiology. Lancet 369, 1627-40.

Beaton EA, Schmidt LA, Ashbaugh AR, Santesso DL, Antony MM, mcCabe RE, Schulkin J. 2006. Low salivary cortisol levels among socially anxious young adults: Preliminary evidence from a selected and a non-selected sample. Personality and Individual Differences 41(7), 1217-1228.

Bishop-Bailey D, Walsh DT, Warner TD. 2004. Expression and activation of the farnesoid X receptor in the vasculature. Proceedings of the National Academy of Sciences 101(10), 3668-3673.

Bonnet M, Buc E, Sauvanet P, Darcha C, Dubois D, Pereira B, Darfeuille-Michaud A. 2014. Colonization of the human gut by E. coli and colorectal cancer risk. Clinical Cancer Research 20(4), 859-867.

Brennan CA, Garrett WS. 2016. Gut microbiota, inflammation, and colorectal cancer. Annual review of microbiology 70, 395-411.

Burns JM, Honea RA, Vidoni ED, Hutfles LJ, Brooks WM, Swerdlow RH. 2012. Insulin is differentially related to cognitive decline and atrophy in Alzheimer’s disease and aging. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1822(3), 333-339.

Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ. 2015. Dysbiosis of the gut microbiota in disease. Microbial ecology in health and disease 26(1), 26191.

Chen D, Yang X, Yang J, Lai G, Yong T, Tang X, Wu Q. 2017. Prebiotic effect of fructooligosaccharides from Morinda officinalis on Alzheimer’s disease in rodent models by targeting the microbiota-gut-brain axis. Frontiers in aging neuroscience 9, 403.

Chen LA, Van Meerbeke S, Albesiano E, Goodwin A, Wu S, Yu H, Sears C. 2015. Fecal detection of enterotoxigenic Bacteroides fragilis. European Journal of Clinical Microbiology & Infectious Diseases 34(9), 1871-1877.

Dan Waitzberg. 2018. Gut microbiota and obesity, Clinical Nutrition Experimental, Aug 20, 60-64.

Darfeuille-Michaud A, Boudeau J, Bulois P, Neut C, Glasser AL, Barnich N. 2004. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology  127, 412-21.

Deplancke B, Gaskins HR. 2003. Hydrogen sulfide induces serum‐independent cell cycle entry in nontransformed rat intestinal epithelial cells. The FASEB journal 17(10), 1310-1312.

Donaldson GP, Lee SM, Mazmanian SK. 2016. Gut biogeography of the bacterial microbiota. Nature Reviews Microbiology 14(1), 20-32.

Du Y, Gao XR, Peng L, Ge JF. 2020. Crosstalk between the microbiota-gut-brain axis and depression. Heliyon, 6(6), e04097.

Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Relman DA. 2005. Diversity of the human intestinal microbial floral Science 308(5728), 1635-1638.

Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, Tito RY. 2016. Population-level analysis of gut microbiome variation. Science 352(6285), 560-564.

Garcia-Lafuente A, Antolin M, Guarner F, Crespo E, Salas A, Forcada P, Laguarda M, Gavalda J, Baena JA, Vilaseca J, Malagelada JR. 1997. Incrimination of anaerobic bacteria in the induction of experimental colitis. Am J Physiol 272, G10-G15.

Geirnaert A, Calatayud M, Grootaert C, Laukens D, Devriese S, Smagghe G, De Vos M, Boon N, Van De Wiele T. 2017. Butyrate-producing bacteria supplemented in vitro to Crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Sci Rep 7, 1-14

Gevers D, Kugathasan S, Denson LA, Vazquez-Baeza Y, Van Treuren W, Ren B. 2014. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe  15, 382-92.

Goodman AL, Kallstrom G, Faith JJ, Reyes A, Moore A, Dantas G, Gordon JI. 2011. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proceedings of the National Academy of Sciences 108(15), 6252-6257.

Gosselin D, Rivest S. 2008. MyD88 signaling in brain endothelial cells is essential for the neuronal activity and glucocorticoid release during systemic inflammation. Molecular psychiatry 13(5), 480-497.

Hansen J, Gulati A, Sartor RB. 2010. The role of mucosal immunity and host genetics in defining intestinal commensal bacteria. Curr Opin Gastroenterol 26, 564-71.

Hardie DG. 2008. AMPK: a key regulator of energy balance in the single cell and the whole organism. International journal of obesity 32(4), S7-S12.

Jie Z, Xia H, Zhong SL, Feng Q, Li S, Liang S, Zhang D. 2017. The gut microbiome in atherosclerotic cardiovascular disease. Nature communications 8(1), 1-12.

Kachrimanidou M, Malisiovas N. Clostrid Kachrimanidou M, Malisiovas N. 2011. Clostridium difficile infection: a comprehensive review. Critical reviews in microbiology 37(3), 178-187.

Khan MJ, Gerasimidis K, Edwards CA, Shaikh MG. 2016. Role of gut microbiota in the aetiology of obesity: proposed mechanisms and review of the literature. Journal of obesity 2016.

Khurana S, Raufman JP, Pallone TL. 2011. Bile acids regulate cardiovascular function. Clinical and translational science 4(3), 210-218.

Leonel AJ, Alvarez-Leite JI. 2012. Butyrate: implications for intestinal function. Current Opinion in Clinical Nutrition & Metabolic Care 15(5), 474-479.

Lessa FC, Mu Y, Bamberg WM, Beldavs ZG, Dumyati GK, Dunn JR. 2015. Burden of Clostridium difficile infection in the United States. N Engl J Med 372, 825-34.

López M. 2017. EJE PRIZE 2017: Hypothalamic AMPK: a golden target against obesity?. European Journal of Endocrinology 176(5), R235-R246.

Lyerly DM, Lockwood DE, Richardson SH, Wilkins TD. 1982. Biological activities of toxins A and B of Clostridium difficile. Infection and immunity 35(3), 1147-1150.

Marques FZ, Mackay CR, Kaye DM. 2018. Beyond gut feelings: how the gut microbiota regulates blood pressure. Nature Reviews Cardiology 15(1), 20.

Milani C, Ticinesi A, Gerritsen J, Nouvenne A, Lugli GA, Mancabelli L, Ferrario C. 2016. Gut microbiota composition and Clostridium difficile infection in hospitalized elderly individuals: a metagenomic study. Scientific reports 6(1), 1-12.

Namavar F, Theunissen EBM, Verweij-Van Vught AMJJ, Peerbooms PGH, Bal M, Hoitsma HFW, MacLaren DM. 1989. Epidemiology of the Bacteroides fragilis group in the colonic flora in 10 patients with colonic cancer. Journal of medical microbiology 29(3), 171-176.

Naseribafrouei A, Hestad K, Avershina E, Sekelja M, Linløkken A, Wilson R, Rudi K. 2014. Correlation between the human fecal microbiota and depression. Neurogastroenterology & Motility 26(8), 1155-1162.

O’Toole PW, Jeffery IB. 2018. Microbiome–health interactions in older people. Cellular and molecular life sciences 75(1), 119-128.

Pistollato F, Sumalla Cano S, Elio I, Masias Vergara M, Giampieri F, Battino M. 2016. Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutrition reviews 74(10), 624-634.

Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Mende DR. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. nature 464(7285), 59-65.

Reichardt N, Duncan SH, Young P, Belenguer A, Leitch CM, Scott KP, Louis P. 2014. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. The ISME journal 8(6), 1323-1335.

Roca-Saavedra P, Mendez-Vilabrille V, Miranda JM, Nebot C, Cardelle-Cobas A, Franco CM, Cepeda A. 2018. Food additives, contaminants and other minor components: effects on human gut microbiota—a review. Journal of physiology and biochemistry 74(1), 69-83.

Rooks MG, Garrett WS. 2016. Gut microbiota, metabolites and host immunity. Nature reviews immunology 16(6), 341-352.

Sangster W, Hegarty JP, Schieffer KM, Wright JR, Hackman J, Toole DR, Stewart Sr DB. 2016. Bacterial and fungal microbiota changes distinguish C. difficile infection from other forms of diarrhea: results of a prospective inpatient study. Frontiers in microbiology 7, 789.

Sears CL. 2009. Enterotoxigenic Bacteroides fragilis: a rogue among symbiotes. Clinical microbiology reviews 22(2), 349-369.

Shimokawa H, Miura M, Nochioka K, Sakata Y. 2015. Heart failure as a general pandemic in Asia. European journal of heart failure 17(9), 884-892.

Sircana A, De Michieli F, Parente R, Framarin L, Leone N, Berrutti M, Musso G. 2019. Gut microbiota, hypertension and chronic kidney disease: recent advances. Pharmacological research 144, 390-408.

Tang WW, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, Hazen SL. 2013. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. New England Journal of Medicine 368(17), 1575-1584.

Tomkovich S, Yang Y, Winglee K, Gauthier J, Mühlbauer M, Sun X, Oswald E. 2017. Locoregional effects of microbiota in a preclinical model of colon carcinogenesis. Cancer research 77(10), 2620-2632.

Underwood S, Guan S, Vijayasubhash V, Baines SD, Graham L, Lewis RJ, Stephenson K. 2009. Characterization of the sporulation initiation pathway of Clostridium difficile and its role in toxin production. Journal of bacteriology 191(23), 7296-7305.

Ventura M, O’Toole PW, de Vos WM, van Sinderen D. 2018. Selected aspects of the human gut microbiota. Cellular and molecular life sciences 75(1), 81-82.

Wahlström A, Sayin SI, Marschall HU, Bäckhed F. 2016. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell metabolism 24(1), 41-50.

Wang J, Tang H, Zhang C, Zhao Y, Derrien M, Rocher E, Shen J. 2015. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. The ISME journal 9(1), 1-15.

Yazici C, Wolf PG, Kim H, Cross TWL, Vermillion K, Carroll T, Xicola RM. 2017. Race-dependent association of sulfidogenic bacteria with colorectal cancer. Gut 66(11), 1983-1994.

Ze X, Duncan SH, Louis P, Flint HJ. 2012. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. The ISME journal 6(8), 1535-1543.

Zhang G, Weintraub A. 1998. Rapid and sensitive assay for detection of enterotoxigenic Bacteroides fragilis. Journal of clinical microbiology 36(12), 3545-3548.

Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, Sartor RB. 2016. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165(1), 111-124.