A Study on genetic diversity and evolutionary analysis of ECA1 Protein in different plant families

Paper Details

Research Paper 01/10/2020
Views (581)
current_issue_feature_image
publication_file

A Study on genetic diversity and evolutionary analysis of ECA1 Protein in different plant families

Roohi Aslam, Nasar Virk, Muhammad Qasim Hayat, Atif Shafique
Int. J. Biosci. 17(4), 134-143, October 2020.
Copyright Statement: Copyright 2020; The Author(s).
License: CC BY-NC 4.0

Abstract

Calcium and manganese are two of the most important nutrients required by plants. Calcium/manganese uptake and accumulation is carried out by a large group of transporters. Among these, the P-type ATPases are considered most important. These ATPases have been divided into two categories i.e., P2A and P2B based on the absence and presence of the N terminal autoinhibitory domain respectively. ECA1 is an important P2A-type ATPase that is localized in the endosomal system and has crucial roles in calcium and manganese translocation. In this study, the phylogeny of ECA1 protein within different plant families as well as conserved motifs putatively involved in Ca2+ ions binding was investigated. Phylogenetic analysis and diversity in predicted tertiary structures indicated that ECA1 protein is functionally conserved but structurally diverged in different plant families. Moreover, some amino acids are found to be involved in Ca2+ ions binding in ECA1 proteins of different plant species which gives the idea that the evolution of ECA1 gene is monophyletic hence, indicating divergent evolution.

Altshuler I, Vaillant JJ, Xu S, Cristescu ME. 2012. The evolutionary history of sarco (endo) plasmic calcium ATPase (SERCA). PLoS One 7(12), e52617. https://doi.org/10.1371/journal.pone.0052617

De Kreij C, Janse J, Vangor BJ, Vandoesburg JDJ. 1992.  The incidence of calcium oxalate crystals in fruit walls of tomato Lycopersicon esculentum Mill. Affected by humidity, phosphate, and calcium supply. Journal of Horticulture Science 67, 45-50. https://doi.org/10.1080/00221589.1992.11516219

Burstrom HG. 1968. Calcium and Plant growth. Biological Reviews 43, 287-316. https://doi.org/10.1111/j.1469-185X.1968.tb00962.x

Case RM, Eisner D, Gurney A, Jones O, Muallem S, Verkhratsky A. 2007. Evolution of calcium homeostasis: from the birth of the first cell to an omni present signaling system. Cell Calcium 42, 345–350. https://doi.org/10.1016/j.ceca.2007.05.001

Dodd AN, Jakobson MK, Baker AJ, Telzerow A, Hou SW, Laplaze L, Barrot L, Poethig RS, Haseloff J, Alex AR. 2006. Time of day modulates low-temperature Ca signals in Arabidopsis. Plant Journal 48, 962–973. https://doi.org/10.1111/j.1365-313X.2006.02933.x

Kudla J, Oliver B, Kenji H. 2010. Calcium Signals: The lead currency of plant information processing 2010.  The plant cell 22(3), 541 563. https://doi.org/10.1105/tpc.109.072686

Liang F, Cunningham KW, Harper JF, Sze H. 1997. ECA1 complements yeast mutants defective in Ca2+ pumps and encodes an endoplasmic reticulum-type Ca2+-ATPase in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the USA 94, 8579–8584.

Liang F, Sze H. 1998. A high-affinity Ca2+ pump, ECA1, from the endoplasmic reticulum is inhibited by cyclopiazonic acid but not by thapsigargin. Journal of Plants Physiology 118(3), 817-25.  https://doi.org/10.1073/pnas.94.16.8579.

Marschner H, 1995. Mineral nutrition of higher plants. 2nd edition. Academic Press, San Deigo. 889.

Monteith GR, McAndrew D, Faddy HM, Roberts-Thomson SJ. 2007. Calcium and cancer: targeting Ca2+ transport. Nature Reviews Cancer 7(7), 519-30. https://doi.org/10.1038/nrc2171

Mills RF, Melissa LD, Rosa LL, Thilo W, Paul D, Michael GP, Jon KP, Lorraine EW. 2008. ECA3, a Golgi Localized P2A-Type ATPase, Plays a Crucial Role in Manganese Nutrition in Arabidopsis. Plant Physiology 146(1), 116–128. https://doi.org/10.1104/pp.107.110817

Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA, Klos AS, Li P, Monia BP, Nguyen NT, Hortobagyi GN, Hung MC, Yu D. 2004. PTEN activation contributes to tumour inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients: Cancer Cell 6(2), 117-27. https://doi.org/10.1016/j.ccr.2004.06.022

Saitou N, Nei M. 1987. The neighbour-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

Shabala S, Baekgaard L, Shabala L, Fuglsang A, Babourina O, Palmgren MG, Cuin TA, Rengel Z, Nemchinov LG. 2011. Plasma membrane Ca2+ transporters mediate virus-induced acquired resistance to oxidative stress. Plant, Cell & Environment 34, 406–417.

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30, 2725-2729. https://doi.org/10.1093/molbev/mst197

Thomas AH. 1999. Bio Edit: a user-friendly biological sequence alignment editor and analysis program for windows 97/98/NT. Nucleic Acid Symposium Series 41, 95-98.

Tuteja N, Mahajan S. 2007. Further characterization of calcineurin B-like protein and its interacting partner CBL-interacting protein kinase from Pisum sativum. Plant Signaling and Behavior 2, 358– 3 61. https://doi.org/10.4161/psb.2.5.41.78

White PJ, Broadley MR. 2003. Calcium in plants.  Annals of Botany 92(4), 487-511. https://doi.org/10.1093/aob/mcg164

Wyn JRG, Lunt OR. 1967. The function of calcium in plants. Botanical Reviews 33, 407–426. https://doi.org/10.1105/tpc.105.032508

Zuckerkandl E, Pauling L. 1965. Evolutionary divergence and convergence in proteins. Academic Press, New York, 97-166.

Related Articles

Sensory evaluation of horn snail (Telescopium telescopium) patty

Ma. Isabel P. Lanzaderas, Gilbert P. Panimdim, Proceso C. Valleser Jr.*, Int. J. Biosci. 28(2), 7-16, February 2026.

Two years evolution of deltamethrin, malathion and pirimiphos-methyl resistance in Aedes aegypti from urban in peri urban sites of Ouagadougou, Burkina Faso

Hyacinthe K. Toe*, Moussa W. Guelbeogo, Soumananaba Zongo, Aboubacar Sombie, Athanase Badolo, Int. J. Biosci. 28(2), 1-6, February 2026.

Physicochemical characterization of annatto seeds (Bixa orellana) sold in Ouagadougou and their oils extracted using chemical processes

Mah Alima Esther Traoré*, Adama Lodoun, Pingdwindé Marie Judith Samadoulougou-Kafando, Nestor Beker Dembélé, Kiswendsida Sandrine Léticia Dayamba, Charles Parkouda, Int. J. Biosci. 28(1), 169-178, January 2026.

Inventory of african yam bean (Sphenostylis stenocarpa (Hochst. ex A. Rich.) Harms) diversity in some Yoruba areas of Benin

Orobiyi Azize*, Faton Manhognon Oscar Euloge, Zongo Élisabeth Aboubié, Sossou Kpèdé Nicodème, Houngbo Marcel, Dossou Pierre Fourier, Ogoudjobi Ladékpo Sylvain, Balogoun Ibouraïman, Dansi Alexandre, Lokoyêyinou Laura Estelle, Int. J. Biosci. 28(1), 161-168, January 2026.

A severe case of human hepatic fascioliasis mimicking an oncological disease in Azerbaijan

Aygun A. Azizova*, Int. J. Biosci. 28(1), 155-160, January 2026.

Combined effect of irrigation frequency and leaf harvesting intensity on soil water content and productivity of baobab (Adansonia digitata) seedlings in vegetable production

Sissou Zakari, Imorou F. Ouorou Barrè, Mouiz W. I. A. Yessoufou*, Colombe E. A. E. Elegbe, Amamath S. Boukari, P. B. Irénikatché Akponikpè, Int. J. Biosci. 28(1), 143-154, January 2026.

Develop sustainable coffee-based farming model using cash crops production

Maribel L. Fernandez, Roje Marie C. Rosqueta*, Diosa G. Alasaas, Boyet C. Pattung, Jaylord Dalapo, Janette Empleo, Int. J. Biosci. 28(1), 134-142, January 2026.

Animal anthrax in northern Tanzania (2015-2025): Epidemiological trends and frontline response capacity

Yohana Michael Kiwone*, Beatus Lyimo, Rowenya Mushi, Joram Buza, Int. J. Biosci. 28(1), 123-133, January 2026.