Antagonistic effect of lactic acid bacteria isolated from camel milk of south Algeria against methicillin-resistant staphylococcus aureus (MRSA)
Paper Details
Antagonistic effect of lactic acid bacteria isolated from camel milk of south Algeria against methicillin-resistant staphylococcus aureus (MRSA)
Abstract
Nosocomial infections due to methicillin-resistant Staphylococcus aureus (MRSA) are a major public health problem worldwide. The main aim of this study was to evaluate the inhibitory potential of lactic acid bacteria (LAB) against MRSA. Six strains of LAB isolated from camel milk, were identified by phenotypic method, which revealed their belonging to the species “Lc.lactis subsp.lactis”; “Lc.lactis subsp.lactis var diacetylactis”; “Lc. lactis subsp. cremoris”; “Enterococcus durans”; “Ln.mesenteroides subsp. mesenteroides”; “Lb. Plantarium”. The antimicrobial activity of these selected strains is examined against five (05) strains of methicillin-resistant Staphylococcus aureus (MRSA) isolated from patients with infections in the intensive care unit of Slimane Amirate hospital, in the wilaya of Touggourt (Algeria) and also against two (02) control strain: methicillin-sensitive Staphylococcus aureus MSSA 25923 ATCC and Methicillin-resistant Staphylococcus aureus MRSA 43300 ATCC. Then the treatment of the culture supernatants of the isolated strains, selected antagonists “Ln. mesenteroides subsp mesenteroides” and “Lb. Plantarum” with proteolytic enzymes inactivated their inhibitory effect, indicating that the agents responsible for the inhibitions are bacteriocins. The physico-chemical characterization of bacteriocins revealed their thermo-resistance and their stability at acidic and basic pH. The results presented in this study provide a clearer idea of the antibacterial potential of bacteriocins produced by Leuconostoc mesenteroides and Lactobacillus plantarum, which represent a way forward to compensate for antibiotic treatments.
Aarestrup FM, Agerso Y, Gerner-Smidt P, Madsen M, Jensen LB. 2000. Comparison of antimicrobial resistance phenotypes and resistance genes in Enterococcus faecalis and Enterococcus faecium from humans in the community, broilers, and pigs in Denmark. Diagnostic microbiology and infectious disease 37, 127–137.
Allouche FN, Hellal A, Laraba A. 2010. Etude de l’activité antimicrobienne des souches de lactobacilles Thermophiles utilisées dans l’industrie laitière. Revue Nature et Technologie 2, 13 –20.
Bouricha M. 2011. La sélection des souches de Leuconostoc mesenteroides productrices de substances antimicrobiennes. PhD thesis, University of Oran, Algeria, p 95 –100.
CA-SFM. 2020. Comité de l’antibiogramme de la Société Française de Microbiologie. Communiqué 2018. Société Française de Microbiologie, Paris, France.
Chesson A, Franklin A, Aumaître A, Sköld O, Leclercq R, Von Wright A, Guillot JF. 2002. Opinion of the scientific committee on animal nutrition on the criteria for assessing the safety of microorganisms resistant to antibiotics of human and veterinary importance. Directorate Scientific Opinions. European Commission Health and Consumer Protection Directorate-General, Brussels, Belgium.
Deresinski S. 2005. Methicillin-resistant Staphylococcus aureus an evolutionary, epidemiologic and therapeutic Odyssey. Clinical Infection Diseaes 40, 562–573.
Doumandji A. 2008. Purification et caractérisation de bactériocines produites par des bactéries lactiques autochtones isolée. PhD thesis, University of Sidi Bel Abess, Algeria, p 85–90.
Ennahar S, SAshihara T, Sonomoto K, Ishizaki A. 2000. Class IIa bacteriocins: biosynthesis, structure and activity. FEMS microbiology reviews 24, 85–106.
Galvez A, Abriouel H, Loppez RL, Ben OMARN. 2007. Bacteriocin-based strategies. International journal of food microbiology 120, 51–70.
Guiraud JP. 2012. Microbiologie alimentaire. Ed. Dunod, Paris, p 300–396.
Hackbarth CJ, Miick C, Chambers HF. 1994. Altered production of penicilin-binding protein 2a can affect phenotypic expression of methicillin resistance in Staphylococcus aureus. Antimicrobial agents and chemotherapy 38, 2568–2571.
Hannachi S. 2008. Inhibition des bactéries indésirables par l’activité antimicrobienne des espèces de Leuconostoc isolées du lait cru de chèvre. PhD thesis, University of Oran, Algeria, p 80–90.
Hummel AS, Holzapfel WH, Franz CMAP. 2007. Characterisation and transfer of antibiotic resistance genes from enterococci isolated from food. Systematic and applied microbiology 30, 1–7.
Jin LZ, Hoy W, Abdullah N, Ali MA, Jaialudin S.1996. Antagonstic effects of intestinal Lactobacillus isolates on pathogens of chicken. Letters in applied microbiology 23, 67–71.
Kandler O, Weiss N. 1986. Regular, Non-Sporing Gram-Positive Rods. In: Sneath HA, Mair NS, Sharpe ME. and Holt, JG, Eds., Bergey’s Manual of Systematic Bacteriology, Williams and Wilkins, Baltimore, p 1208–1234.
Karam HZ, Karam NE. 2006. Bactéries lactiques du lait de chamelle d’Algérie: mise en évidence de souches de Lactococcus résistantes au sel. Tropicultura 24, 153–156.
Khay E, Idaomar M, Castro LMP, Bernardez PF, Senhaji NS, Abrini J. 2011. Antimicrobial activities of the bacteriocin-like substances produced by lactic acid bacteria isolated from Moroccan dromedary milk. African journal of biotechnology 10, 10447–10455.
Klaenhammer TR. 1988. Bacteriocins of lactic acid bacteria. Biochimie 70, 337–349.
Labioui H, ELmoualdi L, EL Yachioui M, Ouhssine M. 2005. Selection de souches de bacteries lactiques antibacteriennes. Bulletin de la Société de Pharmacie de Bordeaux 144, 237–250.
Lachance M. 2000. Purification et caractérisation d’une bactériocine produite par Lactococcus lactis ssp. lactis mjc15.Mémoire pour l’obtention du grade de maître ès sciences. University of Laval, Canada, p 91.
Le LAYC. 2009. Mise en evidence et caractérisation in vitro de l’activité antifongique de la nisine Z, une bactériocine produite par Lactococcus Lactis ssp. Lactis Biovar diacety lactis UL719, sur Candida albicans. Mémoire pour l’obtention du grade de maître ès sciences, University of Laval, Quebec, p 87.
Martins A, Cunha MRS. 2007. Methicillin resistance in Staphylococcus aureus and coagulase-negative Staphylococci: Epidemiological and molecular aspects. Microbiology and Immunology 51, 787–795.
Merzouk Y. 2015. A procédé à une optimisation des conditions de fermentations et de préservation du lait cru de chamelles par des bactéries lactiques adaptées aux conditions de stress. PhD thesis, University of Algeria, p 126.
Niemeyer DM, Pucci MJ, Thanassi JA, Sharma VK, Archer GR. 1996. Role of mecA transcriptional regulation in the phenotypic expression of methicillin resistance in Staphylococcus aureus. Journal of Bacteriology 178, 5464–5471.
Schillinger U, Luke FK. 1989. Antibacterial activity of Lactobacillus sake isolated from meat. Applied and Environmental Microbiology 55, 1901–1906.
Stiles ME, Holzapfel WH. 1997. Lactic acid bacteria of foods and their current taxonomy. International Journal of Food Microbiology 36, 1–29.
Ten brink B, Minekus M, Vander Vossen JMBM, Leer RJ, Huis JHJ. 1994. Antimicrobial activity of Lactobacilli: preliminary characterisation and optimisation of production of acidocin B, a novel bacteriocin produced by Lactobacillus acidophilus M46. Journal of Applied Bacteriology 77, 140–148.
Chethouna Fatma, Boudjenah Haroun Saliha (2022), Antagonistic effect of lactic acid bacteria isolated from camel milk of south Algeria against methicillin-resistant staphylococcus aureus (MRSA); IJB, V21, N2, August, P179-188
https://innspub.net/antagonistic-effect-of-lactic-acid-bacteria-isolated-from-camel-milk-of-south-algeria-against-methicillin-resistant-staphylococcus-aureus-mrsa/
Copyright © 2022
By Authors and International
Network for Natural Sciences
(INNSPUB) https://innspub.net
This article is published under the terms of the
Creative Commons Attribution License 4.0