Antibiotic residues in food of animal origin: effect of heat treatment on some antibiotic molecules used in veterinary medicine

Paper Details

Research Paper 01/02/2022
Views (740)
current_issue_feature_image
publication_file

Antibiotic residues in food of animal origin: effect of heat treatment on some antibiotic molecules used in veterinary medicine

Serge Samandoulougou, Hamidou Compaore, Fidèle Wend-Bénédo Tapsoba, André Jules Ilboudo, Hagretou Sawadogo/Lingani
Int. J. Biosci. 20(2), 116-125, February 2022.
Copyright Statement: Copyright 2022; The Author(s).
License: CC BY-NC 4.0

Abstract

Foods of animal origin containing residues of antibiotics are mostly not consumed raw. They undergo heat treatment through unit operations such as cooking, pasteurization, frying etc. These heat treatments induce effects on antibiotic residues in food of animal origin. The objective of this study is to assess the effect of heat treatment on antibiotic molecules that may be found as residues in meat, milk or eggs consumed. The effects of heat treatments on oxytetracycline, chlortetracycline, penicillin G, streptomycin and chloramphenicol were evaluated. The evaluation was made by visual observation to appreciate the color changes and the formation of precipitates. Also, microbiological methods have use to measure the inhibitory capacity of antibiotics subjected to thermal treatment. Spectrophotometry and high performance liquid chromatography (HPLC) have permit to quantify and identify antibiotics. It emerges from this evaluation that heat treatment can cause, on the one hand, a degradation of certain antibiotics with an increase or decrease in their inhibitory capacity. On the other hand, antibiotic molecules can change their conformation or remain stable under different heat treatments. Residues of antibiotics which may be found in foods of animal origin are not removed by heat treatments; but they remain stable or undergo modifications which can make them more or less toxic.

Alambedji RB, Akakpo AJ, Teko-Agbo A, Chataigner B, Stevens B, Gadin B. 2008. Contrôle des résidus : exemple des antibiotiques dans les aliments au Sénégal. Conférence de l’Organisation mondiale de la santé animale sur les médicaments vétérinaires en Afrique, Dakar, p 11.

Biagui C. 2002. Utilisation des médicaments vétérinaires en élevage avicole dans la région de Dakar ; qualité de la viande à travers la recherche de résidus de substances à activité antimicrobienne (Antibiotiques). Thèse, École Inter-États des Sciences et Médecine Vétérinaires, Université Cheick Anta Diop de Dakar, Sénégal, p 153.

Fabre JM, Gardey L, Lherbette L, De Boisseson M, Berthelot X. 2000. Détection des résidus de céfalexine dans le lait en cas d’allongement de la durée du traitement par voie intramammaire. Revue de Médecine Vétérinaire 151(10), p 965-968.

Gysi M. 2006. Antibiotiques utilisés en production laitière en 2003 et 2004. Suisse. Agriculture 38, p 215-220.

Hao DN. 2000. Report on real situation evaluation results and draff safe food production programme in Hanoi. In Vietnamese, p 49-60.

Kabir J, Umoh VJ, Audu-Okoh E, Umoh JU, Kwaga JKP. 2004. Veterinary drug use in poultry farms and determination of antimicrobial drug residues in commercial eggs and slaughtered chicken in Kaduna State, Nigeria. Food Control 15, p 99-105.

Kouakou NDV, Traore GC, Angbo-Kouakou CEM, Kouame KB, Adima AA, Assidjo NE, Grongnet JF, Kouba M. 2015. Essai préliminaire de production d’œufs des poules pondeuses (ISA Warren) enrichis en acides gras polyinsaturés oméga 3 avec les graines de Euphorbia heterophylla L. International Journal of Biological and Chemical Sciences 9(4), p 1902-1909. http://dx.doi.org/10.4314/ijbcs. v9i4.15

Lederer J. 1986. Encyclopédie modern de l’hygiène alimentaire. Paris. Nauwelaerts, p 289.

Mensah SEP, Koudandé OD, Sanders P, Laurentie M, Mensah GA Abiola FA. 2014. Résidus d’antibiotiques et denrées d’origine animale en Afrique : risques de santé publique . Revue scientifique et technique – Office international des épizooties 33(3).

Moretain JP. 2005. Les résidus d’antibiotiques dans les aliments. Laboratoire d’études et de recherches sur les médicaments vétérinaires et les désinfectants. AFSSA, Fougères, France, p 18.

Nhiem DV, Peter P, Witaya S, Frans JMS, Moses NK, Maximilian POB, Karl HZ and Ngan PH. 2006. Preliminary Analysis of Tetracycline Residues in Marketed Pork in Hanoi, Vietnam. Annals of the New York Academy of Sciences 1081, p 534–542.

Nys Y, Sauveur B. 2004. Valeur nutritionnelle des œufs. Institut National de la Recherche Agronomique 17, 385-393. https://hal.inrae.fr/hal-02681912/document

Persoons D. 2011. Antimicrobial use and resistance in Belgian broiler production. PhD thesis, Ghent University, Belgium.

Ramdane MS. 2015. Etudes qualitatives et quantitatives des résidus d’antibiotiques dans la viande de volaille et les œufs dans la région de la Mitidja. Utilisation des probiotiques comme alternative. Thèse de doctorat, Université de Mouloud Mammerie d’ Algérie, p 159.

Sanders P. 2005. L’antibiorésistance en médecine vétérinaire : enjeux de santé publique et de santé animale. Bulletin de l’Académie Vétérinaire de France 158 (2), 137–142.

Tatsadjieu NL, Tanedjieu KS, Mbofung CMF. 2009. Impact de l’utilisation des antibiotiques sur la sensibilité des bactéries pathogènes de poules dans la ville de Ngaoundéré. Cameroon Journal of Experimental Biology 5(2), 52–61.

Van Egmond HJ, Nouws JFM, Schilt R, van Lankveld-Driessen WDM, Streutjens-van Neer EPM, Simons FGH. 2000: Stability of antibiotics in meat during a simulated high temperature destruction process. Euro Residue IV 29, p 430–437.

Related Articles

Unravelling the complex interactions between microplastics and PPCPs: The environment and health implications

Roshy Ann Mathews, S. Rajakumar, N. Aishwarya, M. Prashanthi Devi, Int. J. Biosci. 27(5), 40-72, November 2025.

Nutraceutical value of Gigantochloa atter and Bambusa blumeana

Eddilyn B. Plaza, Gemma A. Gruyal, Int. J. Biosci. 27(5), 34-39, November 2025.

Absence of climatic factors influence on the prevalence of COVID-19 in Benin: A spatiotemporal analysis

Houndonougbo Antoine, Lagaki Koudousse, Dramane Gado, Chogolou Ruth, Sanoussi Falilath, Kissira Islamiath, Sohou Stephane, Oloukou Freedy, Senou Elie, Yadouleton Anges, Int. J. Biosci. 27(5), 16-23, November 2025.

Isopulegol mitigates high glucose-induced oxidative stress in HK-2 cells via activation of the Nrf2/ARE pathway

Mathew Maria Caroline Rebellow, Ravishankar Sarumathi, Chandrasekaran Sankaranarayanan, Int. J. Biosci. 27(5), 6-15, November 2025.

Exploring Ctenolepis garcinii as a natural anti-diabetic agent: A phytochemical, biochemical and molecular docking approach

A. M. Thafshila Aafrin, R. Anuradha, Int. J. Biosci. 27(4), 208-214, October 2025.

Assessment of the population dynamics of microorganisms in mountainous brown soils of Gobustan in relation to soil-climate conditions

Zohra N. Mammadzada, Basti N. Alyeva, Sevinch J. Garayeva, Nizami R. Namazov, Int. J. Biosci. 27(4), 203-207, October 2025.