Antioxidant activity and total polyphenol and flavonoid contents of Cissus doeringii Gilg & M. Brandt (Vitaceae) and Diospyros mespiliformis Hochst. ex DC. (Ebenaceae), used for treating malaria

Paper Details

Research Paper 07/09/2024
Views (569)
current_issue_feature_image
publication_file

Antioxidant activity and total polyphenol and flavonoid contents of Cissus doeringii Gilg & M. Brandt (Vitaceae) and Diospyros mespiliformis Hochst. ex DC. (Ebenaceae), used for treating malaria

Sylla Youssouf , Diomandé Awa, Kouamé Amoin Gervaise, Koffi Akessé Georges, Azokou Alain, Koné Mamidou Witabouna
Int. J. Biosci. 25(3), 137-147, September 2024.
Copyright Statement: Copyright 2024; The Author(s).
License: CC BY-NC 4.0

Abstract

Cissus doeringii (Vitaceae) and Diospyros mespiliformis (Ebenaceae) are two plants traditionally used to treat malaria that generates strong oxidative stress. This study was conducted to evaluate the in vitro antioxidant activity and the total polyphenol and flavonoid contents of the aqueous and methanolic extracts of leaves of these two plants. The antioxidant activity of extracts was evaluated by the free radical scavenging methods (DPPH and ABTS). Polyphenol and flavonoid contents of the extracts were determined by the spectrocolorimetric method. The results of the antioxidant activity revealed that the DPPH radical inhibition percentages of the extracts ranged from 34.95 ± 3.4 to 70.84% with IC50 ranging from 5.52 to 36.59 μg/mL and those of the ABTS radical from 52.98 ± 6,69 to 81.32 ± 3.08% with IC50 between 5.98 and 34.12 μg/mL. The methanolic extract of the leaves of Cissus doeringii showed the best antiradical activity (ABTS) with an IC50 of 5.98 μg/mL, in comparison to those of the references, ascorbic acid (5.30 μg/ml) and trolox (5.73 μg/ml). The antioxidant capacities of the extracts ranged from 59.79 ± 7.55 to 68.26 ± 5.76 mg of TEg-1 dry matter. The polyphenol contents were between 336.36 ± 0.58 and 466.67 ± 0.58 mg EAG/g of extract and the total flavonoid contents between 202.14± 0.26 and 254.06 ± 0.26 mg ECA/g extract. These two plants could be sources of natural antioxidants able to prevent the oxidative stress associated with Plasmodium infection and other diseases.

Bidié AP, N’guessan BB, Yapo AF, N’guessan JD, Djaman AJ. 2011. Activités antioxydantes de dix plantes médicinales de la pharmacopée ivoirienne. Sciences et Nature 8(1), 1-11. http://dx.doi.org/10.4314/SCINAT.V8I1-2

Cakir A, Mavi A, Yıldırım A, Duru ME, Harmandar M, Kazaz C. 2003. Isolation and characterization of antioxidant phenolic compounds from the aerial parts of Hypericum hyssopifolium L. by activity-guided fractionation. Journal of Ethnopharmacology 87, 73-83. http://dx.doi.org/10.1016/s0378-8741(03)0011.2-0

Chang C, Yang M, Wen H, Chern J. 2002. “Estimation of total flavonoid content in propolis by two complementary colorimetric methods.” Journal of Food Drug Analaysis 10, 178-182. http://dx.doi.org/10.4236/jbm.2017.51003

Choong C, Van-Den TT, Roger F, Roger MCFL. 2007. Antioxidant activities, phenolic and beta-carotene contents of sweet potato genotypes with varying flesh colours. Food Chemistry 103(3), 829-838. http://dx.doi.org/10.1016/j.foodchem.2006.09.033

Dichi I, Breganó JW, Simão ANC, Cecchini R.2013. Role of Oxidative Stress in Chronic Diseases. CRC Press, 720 p.ISBN : 0-429-07595-2.

Diomande A, Yao K, Sylla Y, Tra Bi FH, Bakayoko A, Koné MW. 2018. Pouvoir antioxydant et teneurs en composés phénoliques de deux espèces du genre Albertisia: Albertisiacordifolia (Mangenot& J. Miège) Forman et Albertisiascandens (Mangenot& J. Miège) Forman (Menispermaceae). European Scientific Journal 14(30), 128-144. https://doi.org/10.19044/esj.2018.v14n30p128

Djeridane A, Yousfi M, Nadjemi B, Boutassouna D, Stocker P, Vidal N. 2006. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chemistry 97, 654-660. https://doi.org/10.1016/j.foodchem.2005.04.028

Ehouman E, Koné MW, Tra Bi FH, Bakayoko A. 2015. Iron reducing and radical scavenging activities of 13 medicinal plants from Côte d’Ivoire. Pharmacognosy Journal 7(5), 266-270. http://dx.doi.org/10.5530/pj.2015.5.2

Eklu-Natey RD, Ballet A, Ahyi MA, Adjanohoun EJ, Aké-Assi L, Chatelain C, Diallo D, Hostettmann K, Sanou L, Koumaré M. 2011. Dictionnaire et monographie multilingues du potentiel médicinal des plantes Africaines. Volume 2 : Monographies. Traditions et médecine T & M, Génève, 1030p. https://doi.org/10.4000/africanistes.3459

Gehrke SS, Pinto EG, Steverding D. 2013. Conjugation to 4-aminoquinoline improves the anti-trypanosomal activity of Deferiprone-type iron chelators. Bioorganic and Medicinal Chemistry, 21(3), 805-813. http://dx.doi.org/10.1016/j.bmc.2012.11.009

Gonzalez-Paramas AM, Ayuda-Duran B., Martinez S, Gonzalez-Manzano S. Santos-Buelga C. 2018. The Mechanisms Behind the Biological Activity of Flavonoids. Current Medicinal Chemistry 25(0), 1-14. http://dx.doi.org/10.2174/0929867325666180706104829

Griffiths MJ, Ndungu F, Baird KL., Muller OP., Marsh K Newton CR. 2001 Oxidative stress and erythrocyte damage in Kenyan children with severe Plasmodium falciparum malaria. British Journal of Haematology, 113, 486-491. http://dx.doi.org/10.1046/j.1365-2141.2001.02758.x

Gülçin I, Mshvildadze V, Gepdiremen A.Elias R. (2006).Screening of antiradical and antioxidant activity of monodesmosides and crude extract from Leonticesmirnowii tuber. Phytomedicine 13, 343–351. https://doi.org/10.1016/j.phymed.2005.03.009

Hans CA., Steven DB, Rick MF. 2009. Antioxidant therapy: Reducing malaria severity? Journal of Critical Care Medicine 37, 758-760. http://dx.doi.org/10.1097/CCM.0b013e318194d5de

Hemmer CJ., Lehr HA., Westphol K., Unverrich M., Kratzius M., Reisinger EC. 2005. Plasmodium falciparum Malaria: reduction of endothelial cell apoptosis in vitro.Infection Immunity 73(3), 1764-1770. http://dx.doi.org/10.1128/IAI.73.3.1764-1770.2005

Jomova K., Valko M. 2011. Importance of iron chelation in free radical-induced oxidative stress and human disease. Current Pharmaceutical Design, 17(31), 3460-3473. http://dx.doi.org/10.2174/1381612117980.72463

Kumaran A., Karunakaran JR. 2007. Activity guided isolation and identification of free radical-scavenging components from an aqueous extract of Coleus aromaticus. Food Chemistry 100, 356-361. http://dx.doi.org/10.1016/j.foodchem.2005.09.051

Leja M, Kamińska I, Kramer M, Maksylewicz-Kaul A, Kammerer D, Carle R, Baranski R. 2013. The Content of Phenolic Compounds and Radical Scavenging Activity Varies with Carrot Origin and Root Color. Plant Foods Hum Nutr 68, 163-170. http://dx.doi.org/10.1007/s11130-013-0351-3

Li HB, Cheng KW, Wong CC, Fan KW, Chen F, Jiang Y. 2007. “Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae.” Food Chemistry 102, 771-776. https://doi.org/10.1016/j.foodchem.2006.06.02.2

Liu Z, Yang L. 2018. Antisolvent precipitation for the preparation of high polymeric procyanidin nanoparticles under ultrasonication and evaluation of their antioxidant activity in vitro. Ultrasonics sonochemistry 43, 208-218. https://doi.org/10.1016/j.ultsonch.2018.01.01.9

Manian R, Anusuya N, Siddhuraju P, Manian S. 2008. The antioxidant activity and free radical scavenging potential of two different solvent extracts of Camellia sinensis (L.) O. Kuntz, Ficus bengalensis L. and Ficus racemosa L. Food Chemistry, 107, 1000-1007. http://dx.doi.org/10.1016/j.foodchem.2007.09.008

Morales-González  JA. 2013. Oxidative Stress and Chronic Degenerative Diseases. A Role for Antioxidants. Licensee Intech., 501p. http://dx.doi.org/10.5772/45722

Müller S. 2015. Role and Regulation of Glutathione Metabolism in Plasmodium falciparum. Molecules, 20(6), 10511-10534. http://dx.doi.org/10.3390/molecules200610511

Muñoz M, García-Erce JA, Remacha ÁF. 2011. Disorders of iron metabolism. Part II: iron deficiency and iron overload. Journal of Clinical Pathology, 64(4), 287-296. http://dx.doi.org/10.1136/jcp.2010.086991

Sanchez-Moreno C. 2002. Methods used to evaluate the free radical scavenging activity in food and biological systems. Food Science and Technology International 8(3), 121 -137. https://doi.org/10.1177/0748233707077429

Sylla Y, Silué KD, Ouattara K., Koné MW. 2018. Etude ethnobotanique des plantes utilisées contre le paludisme par les tradithérapeutes et herboristes dans le district d’Abidjan (Côte d’Ivoire).International Journal of Biology Chemistry and Sciences 12(3), 1380-1400. http://dx.doi.org/10.4314/ijbcs.v12i3.25

Wangcharoen W, Morasuk W. 2007. Antioxidant capacity and phenolic content of some Thai culinary plants. Maejo International Journal of Sciences and Technology 01, 100-106. https://www.researchgate.net/publication/284255562

Related Articles

Sensory acceptability of gnocchi pasta added with different levels of malunggay (Moringa oleifera) leaves and blue ternate (Clitoria ternatea) flowers

Ralph Justyne B. Bague, James Troyo, Proceso C. Valleser Jr.*, Int. J. Biosci. 28(1), 103-114, January 2026.

Spatio-temporal analysis of vegetation cover and socio-environmental implications in Korhogo (Northern Côte d’Ivoire) from 1990-2020

Adechina Olayossimi*, Konan Kouassi Urbain, Ouattara Amidou, Yao-Kouamé Albert, Int. J. Biosci. 28(1), 94-102, January 2026.

Predicting the habitat suitability of Vitellaria paradoxa under climate change scenarios

Franck Placide Junior Pagny*, Anthelme Gnagbo, Dofoungo Kone, Blaise Kabré, Marie-Solange Tiébré6,, Int. J. Biosci. 28(1), 73-83, January 2026.

Performance response dynamics of rabbits (Oryctolagus cuniculus) to locally sourced, on-farm feed ingredients during the growing phase: Implications for the institutional rabbit multiplier project

Roel T. Calagui*, Janelle G. Cadiguin, Maricel F. Campańano, Jhaysel G. Rumbaoa, Louis Voltaire A. Pagalilauan, Mary Ann M. Santos, Int. J. Biosci. 28(1), 65-72, January 2026.

Chronopharmacology: Integration of circadian biology in modern pharmacotherapy

Sangram D. Chikane*, Vishal S. Adak, Shrikant R. Borate, Rajkumar V. Shete, Deepak V. Fajage, Int. J. Biosci. 28(1), 56-64, January 2026.

Evaluation of the impact of floristic diversity on the productivity of cocoa-based agroforestry systems in the new cocoa production area: The case of the Biankouma department (Western Côte d’Ivoire)

N'gouran Kobenan Pierre, Zanh Golou Gizele*, Kouadio Kayeli Anaïs Laurence, Kouakou Akoua Tamia Madeleine, N'gou Kessi Abel, Barima Yao Sadaiou Sabas, Int. J. Biosci. 28(1), 44-55, January 2026.

Utilization of locally sourced feed ingredients and their influence on the growth performance of broiler chickens (Gallus gallus domesticus): A study in support of the school’s chicken multiplier project

Roel T. Calagui*, Maricel F. Campańano, Joe Hmer Kyle T. Acorda, Louis Voltaire A. Pagalilauan, Mary Ann M. Santos, Jojo D. Cauilan, John Michael U. Tabil, Int. J. Biosci. 28(1), 35-43, January 2026.