Welcome to International Network for Natural Sciences | INNSpub

Antioxidant potential of the ethanol, ethyl acetate and petroleum ether extracts of Kyllinga nemoralis

Research Paper | April 1, 2022

| Download 32

Aileen May G. Ang, Irish E. Uyangurin

Key Words:

Int. J. Biosci.20( 4), 59-69, April 2022

DOI: http://dx.doi.org/10.12692/ijb/20.4.59-69


IJB 2022 [Generate Certificate]


Kyllinga nemoralis has been used in traditional folk medicine. Despite ethnobotanical reports, there are only limited studies on its antioxidant properties. This study determined the antioxidant properties of the ethanolic (KnE), ethyl acetate (KnEA) and petroleum ether (KnP) extracts of K. nemoralis using total antioxidant capacity (TAC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and reducing power assays. Results showed that the antioxidative property of K. nemoralis extracts is extraction solvent-dependent. The TAC of KnP (94.60 mg AAE/g) and KnEA (72.08 mg AAE/g) were significantly higher than KnE (70.25 mg AAE/g). However, the EC50 (effective concentration) of KnE (15.02 mg/L; 112.43 mg/L) and KnEA (62.19 mg/L; 123.13 mg/L) indicates stronger DPPH free radical scavenging activity and reducing power than KnP (765.32 mg/L; 514.85 mg/L). Thus, K. nemoralis is a potential source of natural antioxidant compounds. Moreover, ethanol and ethyl acetate are recommended as a relatively good solvent for the extraction of antioxidant compounds from K. nemoralis.


Copyright © 2022
By Authors and International Network for
Natural Sciences (INNSPUB)
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Antioxidant potential of the ethanol, ethyl acetate and petroleum ether extracts of Kyllinga nemoralis

Aires A. 2017. Phenolics in Foods: Extraction, Analysis and Measurements. Hernandez MS, Tenango MP and Mateos MdRG. Phenolic Compounds-Natural Sources, Importance and Applications. In Tech, Janeza Trdine 9, 51000 Rijeka, Croatia 61-88.

Altemimi A, Lakhssassi N, Baharlouei A, Watson D, Lightfoot D. 2017. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 6(4), 42. https://doi.org/10.3390/plants6040042

Amor EC, Quanico JP, Perez GG. 2009. Analgesic activity of extracts of Kyllinga monocephala. Pharmaceutical Biology 47(7), 624-627. https://doi.org/10.1080/13880200902915614

Anbudhasan P, Surendraraj A, Karkuzhali S, Sathishkumaran P. 2014. Natural antioxidants and its benefits. International Journal of Food and Nutritional Sciences 3(6), 225-232.

Anosike CA, Ogili OB, Nwankwo ON, Eze EA. 2012. Phytochemical screening and antimicrobial activity of the petroleum ether, methanol and ethanol extracts of Ceiba pentandra stem bark. Journal of Medicinal Plants Research 6(46), 5743-5747. https://doi.org/10.5897/JMPR12.978

Asif M. 2015. Chemistry and antioxidant activity of plants containing some phenolic compounds. Chemistry International 1(1), 35-52.

Babbar N, Oberoi HS, Sanhu SK, Bhargav VK. 2014. Influence of different solvents in extraction of phenolic compounds from vegetable residues and their evaluation as natural sources of antioxidants. Journal of Food science and Technology 51(10), 2568-2575.

Bendary E, Francis RR, Ali HMG, Sarwat MI, El Hady S. 2013. Antioxidant and structure–activity relationships (SARs) of some phenolic and aniline compounds. Annals of Agricultural Sciences 58(2), 173-181.  https://doi.org/10.1016/j.aoas.2013.07.002

Bhragual DD, Kumar N, Garg VK, Sharma PK. 2010. Review on plants having hepatoprotective activity. Journal of Pharmacy Research 3(9), 2077-2082.

Boeing JS, Barizão ÉO, e Silva BC, Montanher PF, de Cinque Almeida V, Visentainer JV. 2014. Evaluation of solvent effect on the extraction of phenolic compounds and antioxidant capacities from the berries: application of principal component analysis. Chemistry Central Journal 8(1), 48.

Bucić-Kojić A, Planinić M, Tomas S, Jokić S, Mujić I, Bilić M, Velić D. 2011. Effect of extraction conditions on the extractability of phenolic compounds from lyophilised fig fruits (Ficus carica L.). Polish Journal of Food and Nutrition Sciences 61(3), 195-199.

Contreras-Guzman ES, Strong FC. 1982. Determination of tocopherols (Vitamin-E) by reduction of cupric ion. Journal of the Association of Official Analytical Chemists 65, 215-1222.https://doi.org/10.1093/jaoac/65.5.1215

Gulcin I, Mshvildadze V, Gepdiremen A, Elias R. 2006. The antioxidant activity of a triterpenoid glycoside isolated from the berries of Hedera colchica: 3‐O‐(β‐d‐glucopyranosyl)‐hederagenin. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives 20(2), 130-134. https://doi.org/10.1002/ptr.1821

Jiang Z, Kempinski C, Chappell J. 2016. Extraction and analysis of terpenes/terpenoids. Current Protocols in Plant Biology 1(2), 345-358. https://doi.org/10.1002/cppb.20024

Karthikeyan R, Mohan Kumar R, Elphine Prabahar A. 2009. Diuretic evaluation of rhizomes of kyllinga nemoralis (Hutch. & Dalz.). Pharmacologyonline 1, 1178-1183.  

Kicel A, Wolbiś M. 2013. Phenolic content and DPPH radical scavenging activity of the flowers and leaves of Trifolium repens. Natural product communications 8(1). https://doi.org/10.1177/1934578X1300800122 

Krishnaiah D, Sarbatly R, Nithyanandam R. 2011. A review of the antioxidant potential of medicinal plant species. Food and Bioproducts Processing 89(3), 217-233. https://doi.org/10.1016/j.fbp.2010.04.008

Miser-Salihoglu E, Akaydin G, Caliskan-Can E, Yardim-Akaydin S. 2013. Evalution of antioxidant activity of various herbal folk medicines. Journal of Nutrition and Food Science 3(5), 1-9.

Murugan K, Lyer VV. 2012. Antioxidant and antiproliferative activities of Marine Algae, Gracilaria edulis and Enteromorpha lingulata, from Chennai Coast. International Journal of Cancer Research 8(1), 15-26. https://doi.org/10.3923/ijcr.2012.15.26

Muthu B, Arumugan J, Kaleena PK, Velu K.   2018. Larvicidal activity and histopathological alterations effected by Kyllinga nemoralis grass weed extracts on the mosquito vectors. International Journal of Research and Analytical Reviews 5(4), 388-403.

Nawaz H, Shad MA, Rehman N, Andaleeb H, Ullah N. 2020. Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Brazilian Journal of Pharmaceutical Sciences 56, 1-9. https://doi.org/10.1590/s2175-97902019000417129

Ngo TV, Scarlett CJ, Bowyer MC, Ngo PD, Vuong QV. 2017. Impact of different extraction solvents on bioactive compounds and antioxidant capacity from the root of Salacia chinensis L. Journal of Food Quality 2017, 1-8. https://doi.org/10.1155/2017/9305047

Pyne SG, Liawruangrath B, Liawruangrath S, Garson M, Khamsan S, Teerawutkulrag A. 2011. Antimalarial, anticancer, antimicrobial activities and chemical constituents of essential oil from the aerial parts of Cyperus kyllingia Endl. Records of Natural Products 5(4), 324-327.

Prieto P, Pineda M, Aguilar M. 1999. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry 269(2), 337-341. https://doi.org/10.1006/abio.1999.4019

Quanico JP, Amor EC, Perez GG. 2008. Analgesic and hypoglycemic activities of Bixa orellana, Kyllinga monocephala and Luffa acutangula. Philippine Journal of Science 137(1), 69-76.

Rajamanikandan S, Sindhu T, Durgapriya D, Sophia D, Ragavendran P, Gopalakrishnan VK. 2011. Radical scavenging and antioxidant activity of ethanolic extract of Mollugo nudicaulis by in vitro assays. Indian Journal of Pharmaceutical Education and Research 45(4), 310-316.

Raju S, Kavimani S, Sreeramulu RK. 2011. Kyllinga nemoralis (Hutch & Dalz)(Cyperaceae): Ethnobotany, Phytochemistry and Pharmacology. Pharmacognosy Journal 3(24), 7-10. https://doi.org/10.5530/pj.2011.24.2

Rani MP, Padmakumari KP. 2012. HPTLC and reverse phase HPLC methods for the simultaneous quantification and in vitro screening of antioxidant potential of isolated sesquiterpenoids from the rhizomes of Cyperus rotundus. Journal of Chromatography B 904, 22-28. https://doi.org/10.1016/j.jchromb.2012.05.042

Rice-Evans CA, Miller NJ, Paganga G. 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine 20(7), 933-956.  https://doi.org/10.1016/0891-5849(95)02227-9

SánchezMoreno C, Larrauri JA, SauraCalixto F. 1998. A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture 76(2), 270-276.  https://doi.org/10.1002/(SICI)1097-0010(199802)76:2<270::AID-JSFA945>3.0.CO;2-9

Schlesier K, Harwat M, Böhm V, Bitsch R.  2002.  Assessment of antioxidant activity by using different in vitro methods. Free Radical Research 36(2), 177-187.  https://doi.org/10.1080/10715760290006411

Shalaby EA, Shanab SM. 2013. Antioxidant compounds, assays of determination and mode of action. African Journal of Pharmacy and Pharmacology 7(10), 528-539. https://doi.org/10.5897/AJPP2013.3474

Siddhuraju P, Becker K. 2003. Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. Journal of Agricultural and Food Chemistry 51(8), 2144-2155. https://doi.org/10.1021/jf020444

Sindhu T, Rajamanikandan S, Srinivasan P. 2014. In vitro antioxidant and antibacterial activities of methanol extract of Kyllinga nemoralis. Indian Journal of Pharmaceutical Sciences 76(2), 170.

Somasundaram A, Karthikeyan R, Velmurugan V, Dhandapani B, Raja M. 2010. Evaluation of hepatoprotective activity of Kyllinga nemoralis (Hutch & Dalz) rhizomes. Journal of Ethnopharmacology 127(2), 555-557. https://doi.org/10.1016/j.jep.2009.11.014

Sun C, Wu Z, Wang Z, Zhang H. 2015. Effect of ethanol/water solvents on phenolic profiles and antioxidant properties of Beijing propolis extracts. Evidence-Based Complementary and Alternative Medicine 1-9. https://doi.org/10.1155/2015/595393

Yadav A, Yadav M, Kumar S, Sharma D, Yadav JP. 2018. In vitro Antioxidant Activities and GC-MS Analysis of Different Solvent Extracts of Acacia nilotica Leaves. Indian Journal of Pharmaceutical Sciences 80(5), 892-902.  https://doi.org/10.4172/pharmaceutical-sciences.1000436

Yazdanparast R, Ardestani A. 2007. In vitro antioxidant and free radical scavenging activity of Cyperus rotundus. Journal of Medicinal Food 10(4), 667-674. https://doi.org/10.1089/jmf.2006.090 

Yeasmen N, Islam MN. 2015. Ethanol as a solvent and hot extraction technique preserved the antioxidant properties of tamarind (Tamarindus indica) seed. Journal of Advanced Veterinary and Animal Research 2(3), 332-337.   http://dx.doi.org/10.5455/javar.2015.b103

Zahin M, Aqil F, Husain FM, Ahmad I. 2013. Antioxidant capacity and antimutagenic potential of Murraya koenigii. BioMed Research international 1-10.

Zengin G, Sarıkürkçü C, Aktümsek A Ceylan R. 2016. Antioxidant potential and inhibition of enzymes linked to Alzheimer’s diseases and diabetes mellitus by monoterpene-rich essential oil from Sideritis galatica Bornm. Endemic to Turkey. Records of Natural Products 10(2).