Biofillm: multicellular living of the unicellular bacteria

Paper Details

Review Paper 01/06/2012
Views (266) Download (1)

Biofillm: multicellular living of the unicellular bacteria

Shah Adil Ishtiyaq Ahmad, S. M. Nayeemul Bari, Mohammad Mohiuddin
Int. J. Biosci.2( 6), 59-71, June 2012.
Certificate: IJB 2012 [Generate Certificate]


Unicellular bacterium in nature prefers to gather round to form a surface attached multi-cellular consortium called biofilm rather than living as an isolated planktonic cell. Biofilms comprise of the bacterial cells attached to a biotic or abiotic surface and the extracellular polymeric substances excreted by the participant cells. Many bacteria can detect environmental signals and respond accordingly to form biofilm and to detach from it. Formation of biofilm is crucial for the survival of the bacteria in the environment and for their interaction within and out of the species. Cells within biofilms are distinct from the free swimming planktonic cells – both physiologically and genetically. Such distinctive features are crucial for the maintenance of the biofilm structure. Biofilms provide the bacteria with various survival and metabolic advantages over the planktonic form. Mixed species biofilms better resemble the environmental biofilm consortia where a group of related bacteria gather onto a single surface and interact among them for the betterment of the whole community. This review discusses about the basic steps of biofilm formation and the specialties of this unique bacterial architecture.


Adam B, Baillie GS, Douglas J. 2002. Mixed species biofilms of Candida albicans and Staphylococcus epidermidis. J. Med. Microbial. 51, 344-349.

Allison DG, Sutherland IW. 1987. The role of exo-polysaccharides in adhesion of freshwater bacteria. J. Gen. Microbiol. 133, 1319-1327.

Allison DG, Ruiz B, SanJose C, Jaspe A, Gilbert P. 1998. Extracellular products as mediators of the formation and detachment of Pseudomonas fluorescens biofilms. FEMS Microbiol. Let. 167, 179-184.

Angles ML, Marshall KC, Goodman AE. 1993. Plasmid transfer between marine bacteria in the aqueous phase and biofilms in reactor microcosms. Appl. Environ. Microbial. 59, 843-850.

Breugelmans P, Barken KB, Tolker-Nielsen T, Hofkens J, Dejonghe W, Springael D. 2008. Architecture and spatial organization in a triple-species bacterial biofilm synergistically degrading the phenylurea herbicide linuron. FEMS Microbiol. Ecol. 64(2), 271-282.

Brown MRW, Gilbert P. 1993. Sensitivity of biofilms to antimicrobial agents. J. Appl. Bacterial. Symp. Suppl. 74, 87S-97S.

Christensen BB, Haagensen JA, Heydorn A, Molin S. 2002. Metabolic commensalism and competition in a two-species microbial consortium. Appl. Environ. Microbiol. 68(5), 2495-2502.

Colwell RR. 1996. Global climate and infectious disease: the cholera paradigm. Science. 274, 2025-2031.

Colwell RR, Huq A. 1994. Environmental reservoir of Vibrio cholerae, the causative agent of cholera. Ann. N.Y. Acad. Sci. 740, 44-54.

Colwell RR, Huq A. 1994. Vibrios in the environment: viable but nonculturable Vibrio cholerae. Vibrio cholerae and Cholera: molecular to global perspectives. Washington, DC: American Society for Microbiology (ASM) Press, 117–133.

Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ. 1987. Bacterial biofilms in nature and disease. Annu. Rev. Microbiol. 41, 435-464.

Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. 1995. Microbial biofilms. Annu. Rev. Microbiol. 49, 711-745.

Davey ME, O’Toole GA. 2000. Microbial biofilms: from ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 64, 847-867.

Davies DG, Geesey GG. 1995. Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture. Appl. Environ. Microbial. 61, 860-867.

Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science. 280, 295-298.

DeBeer D, Srinivasan R, Stewart PS. 1994. Direct measurement of chlorine penetration into biofilms during disinfection. Appl. Environ. Microbial. 60, 4339-4344.

DeBeer D, Stoodley P. 1995. Relation between the structure of an aerobic biofilm and mass transport phenomena. Water Sci. Technol. 32, 11-18.

Faruque SM, Albert MJ, Mekalonos JJ. 1998. Epidemiology, genetics, and ecology of toxigenic Vibrio cholereae. Microbiol. Mol. Biol. Rev. 62, 1301-1314.

Faruque SM, Biswas K, Nashir Udden SM, Ahmad QS, Sack DA, Nair GB, Mekalanos JJ. 2006. Transmissibility of cholera: in vivo-formed biofilms and their relationship to infectivity and persistence in the environment. Proc. Natl. Acad. Sci. USA. 103(16), 6350-6355.

Fey PD and Olson ME. 2010. Current concepts in biofilm formation of Staphylococcus epidermidis. Future Microbiol. 5(6), 917-933.

Garrett ES, Perlegas D, Wozniak DJ. 1999. Negative control of flagellum synthesis in Pseudomonas aeruginosa is modulated by the alternative sigma factor AlgT (AlgU). J. Bacterial. 181, 7401-7404.

Genevaux P, Muller S, Bauda P. 1996. A rapid screening procedure to identify mini-Tn10 insertion mutants of Eschericia coli K-12 with altered adhesion properties. FEMS Microbiol. Lett. 142, 27-30.

Hall-Stoodley L, Stoodley P. 2005. Biofilm formation and dispersal and the transmission of human pathogens.Trends Microbiol. 13, 7-10.

Hammer BK, Bassler BL. 2003. Quorum sensing controls biofilm formation in Vibrio cholerae. Mol. Microbiol. 50, 101-104.

Hansen SK, Rainey PB, Haagensen JAJ, Molin S. 2007. Evolution of species interactions in a biofilm community. Nature. 445, 533-536.

Hassett DJ, Ma JF, Elkins JG, McDermott TR, Ochsner UA, West SE, Huang CT, Fredericks J, Burnett S, Stewart PS, McFeters G, Passador L, Iglewski BH. 1999. Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol. Microbial. 34, 1082-1093.

Hausner M, Wuertz S. 1999. High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Appl. Environ. Microbial. 65, 3710-3713.

Hentzer M, Riedel K, Rasmussen TB, Heydorn A, Anderson JB, Parsek MR, Rice SA, Eberl L, Molin S, HΦ iby N, Kjellberg S, Givskov M. 2002. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology. 148, 87-102.

Hoefel D, Ho L, Aunkofer W, Monis PT, Keegan A, Newcombe G, Saint CP. 2006. Cooperative biodegradation of geosmin by a consortium comprising three gram-negative bacteria isolated from the biofilm of a sand filter column. Lett. Appl. Microbiol. 43(4), 417-423.

Huang C, Xu KD, McFeters GA, Stewart PS. 1998. Spatial patterns of alkaline phosphatase expression within bacterial colonies and biofilms in response to phosphate starvation. Appl. Environ. Microbial. 64(4), 1526-1531.

Huq A, Small EB, West PA, Huq MI, Rahman R, Colwell RR. 1983. Ecological relationships between Vibrio cholerae and crustacean copedos. Appl. Environ. Microbiol. 45, 275-283.

Jiménez L, Breen A, Thomas N, Federle TW, Sayler GS. 1991. Mineralization of linear alkylbenzene sulfonate by a four-member aerobic bacterial consortium. Appl. Environ. Microbiol. 57(5), 1566-1569.

Jobling MG, Holmes RK. 1997. Characterization of hapR, a positive regulator of the Vibrio cholerae HA/protease gene hap, and its identification as a functional homologue of the Vibrio harveyi luxR gene.Mol. Microbiol. 26, 1023-1034.

Kamruzzaman M, Nashir Udden SM, Cameron DE, Calderwood SB, Nair GB, Mekalonos JJ, Faruque SM. 2010. Quorum regulated biofilms enhances the development of conditionally viable, environmental Vibrio cholerae. Proc. Natl. Acad. Sci. USA. 107(4), 1588-1593.

Karatan E and Watnick P. 2009. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol. Mol. Biol. Rev. 73(2), 310-347.

Kierek K and Watnick PI. 2003. Environmental determinants of Vibrio cholerae biofilm development. Appl. Environ. Microbiol. 69(9), 5079-5088.

Lappin HM, Greaves MP, Slater JH. 1985. Degradation of the herbicide mecoprop (2-(2-methyl-4-chlorophenoxy)propionic acid) by a synergistic microbial community. Appl. Environ. Microbiol. 49(2), 429-433.

Lauriano CM, Ghosh C, Correa NE, Klose KE. 2004. The sodium-driven flagellar motor controls exopolysaccharide expression inVibrio cholerae. J. Bacteriol. 186, 4864-4874.

Lemaire R, Yuan Z, Blackall LL, Crocetti GR. 2008. Microbial distribution of Accumulibacter spp. and Competibacter spp. in aerobic granules from a lab-scale biological nutrient removal system. Environ. Microbial. 10(2), 354-363.

McDougald D, Rice SA, Barraud N, Steinberg PD and Kjelleberg S. 2012. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat. Rev. Microbiol. 10, 39-50.

McLean RJ, Whiteley M, Strickler DJ, Fuqua WC. 1997. Evidence of autoinducer activity in naturally occurring biofilms. FEMS Microbiol. Lett. 154, 259-263.

Miller MB, Skorupski K, Lenz DH, Taylor RK, Bassler BL. 2002. Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell. 110, 303-314.

Moller S, Pedersen AR, Poulsen LK, Arin E, Molin S. 1996. Activity and three-dimensional distribution of toluene-degrading Pseudomonas putida in a multispecies biofilm assessed by quantitative in situ hybridization and scanning confocal laser microscopy. Appl. Environ. Microbial. 62, 4632-4640.

Moller S, Sternberg C, Andersen JB, Christensen BB, Ramos JL, Givskov M, Molin S. 1998. In situ gene expression in mixed-culture biofilms: evidence of metabolic interactions between community members. Appl. Environ. Microbial. 64, 721-732.

Moons P, Van Houdt R, Aertsen A, Vanoirbeek K, Engelborghs Y, Michiels CW. 2006. Role of quorum sensing and antimicrobial component production by Serratia plymuthica in formation of biofilms, including mixed biofilms with Eschericia coli. Appl. Environ. Microbiol. 72(11), 7294-7300.

Moons P, Michiels CW, Aertsen A. 2009. Bacterial interactions in biofilms. Crit. Rev. Microbiol. 35(3), 157-168.

Nielsen AT, Tolker-Nielsen T, Barken KB, Molin S. 2000. Role of commensal relationships on the spatial structure of a surface-attached microbial consortium. Environ. Microbiol. 2(1), 59-68.

O’Toole GA, Kolter R. 1998. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbial. 30, 295-304.

Palmer RJJ, Kazmerzak K, Hansen MC and Kolenbrander PE. 2001. Mutualism versus independence: strategies of mixed-species oral biofilms in vitro using saliva as the sole nutrient source. Infect. Immun. 69, 539-574.

Parsek MR, Singh PK. 2003. Bacterial biofilms: an emerging link to disease pathogenesis. Annu. Rev. Microbiol. 57, 677-701.

Pratt LA, Kolter R. 1998. Genetic analysis of Eschericia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol. Microbial. 30, 285-293.

Prigent-Combaret C, Vidal O, Dorel C, Lejeune P. 1999. Abiotic surface sensing and biofilm-dependent regulation of gene expression in Eschericia coli. J. Bacteriol. 181, 5993-6002.

Prüß BM, Besemann C, Denton A and Wolfe AJ. 2006. A complex transcription network controls the early stages of biofilm development by Eschericia coli. J. Bacteriol. 188(11), 3731-3739.

Rao D, Webb JS, Kjelleberg S. 2005. Competitive interactions in mixed-species biofilms containing the marine bacterium Pseudoalteromonas tunicata. Appl. Environ. Microbiol. 71(4), 1729-1736.

Schembri MA, Kjaergaard K, Klemm P. 2003. Global gene expression in Escherichia coli biofilms. Mol. Microbiol. 48, 253-267.

Schramm A, Larsen LH, Revsbech NP, Ramsing NB, Amann R, Schleifer KH. 1996. Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectrodes. Appl. Environ. Microbial. 62(12), 4641-4647.

Shalá AA, Restrepo S and Barrios AFG. 2011. A network model for biofilm development in Eschericia coli K-12. Theoretical Biology and Medical Modelling. 8, 34.

Shrout JD, Tolker-Nielsen T, Givskov M and Parsek MR. 2011. The contribution of cell-cell signaling and motility to bacterial biofilm formation. MRS Bull. 36(5), 367-373.

Stewart PS, Camper AK, Handran SD, Huang C, Warnecke M. 1997. Spatial distribution and coexistence of Klebsiella pneumoniae and Pseudomonas aeruginosa in biofilms. Microb. Ecol. 33(1), 2-10.

Stickler DJ, Morris NS, McLean RJ, Fuqua C. 1998. Biofilms on indwelling urethral catheters produce quorum-sensing signal molecules in situ and in vitro. Appl. Environ. Microbial. 64, 3486-3490.

Stoodley P, DeBeer D, Lewandowski Z. 1994. Liquid flow in biofilm systems. Appl. Environ. Microbiol. 60, 2711-2716.

Tait K, Sutherland IW. 2002. Antagonistic interactions amongst bacteriocin-producing enteric bacteria in dual species biofilms. J. Appl. Microbiol. 93(2), 345-352.

Tamplin ML, Gauzens AL, Huq A, Sack DA, Colwell RR. 1990. Detection of Vibrio cholerae 01 in the aquatic environment by fluorescent-monoclonal antibody and culture methods. Appl. Environ. Microbiol. 56, 2370-2373.

Thiele JH, Chartrain M, Zeikus JG. 1988. Control of interspecies electron flow during anaerobic digestion: role of floc formation in syntropic methanogenesis. Appl. Environ. Microbiol. 54(1), 10-19.

Vance RE, Zhu J, Mekalanos JJ. 2003. A constitutively active variant of the quorum-sensing regulator LuxO affects protease production and biofilm formation in Vibrio cholerae. Infect. Immun. 71, 2571-2576.

Walther GR, Post E, Convey P, Menzel A, Parmesnak C, Beebee TJC, Fromentin J-M, Guldberg OH and Bairlein F. 2002. Ecological responses to recent climate change. Nature. 416, 389-395.

Waters CM, Bassler BL. 2005. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell. Dev. Biol. 21, 319-346.

Watnick PI, Kolter R. 1999. Steps in the development of a Vibrio cholera El Tor biofilm. Mol. Microbial. 34, 586-595.

Watnick PI, Fullner KJ, Kolter R. 1999. A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae El Tor. J. Bacteriol. 181, 3606-3609.

Watnick P, Kolter R. 2000. Biofilm, city of microbes. J. Bacteriol. 182(10), 2675-2679.

Watnick PI, Lauriano CM, Klose KE, Croal L, Kolter R. 2001. The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139. Mol. Microbiol. 39, 223-235.

West SA, Griffin AS, Gardner A and Diggle SP. 2006 Social evolution theory for microorganisms. Nat. Rev. Microbiol. 4, 597-607.

Whiteley M, Bangera MG, Bumgarner RE, Parsek MR, Teitzel GM, Lory S, Greenberg EP. 2001. Gene expression in Pseudomonas aeruginosa biofilms. Nature 413, 860-864.

Wolfaardt GM, Lawrence JR, Robarts RD, Caldwell SJ, Caldwell DE. 1994. Multicellular organization in a degradative biofilm community. Appl. Environ. Microbial. 60(2), 434-446.

Wolfaardt GM, Lawrence JR, Robarts RD, Caldwell DE. 1995. Bioaccumulation of the herbicide diclofop in extracellular polymers and its utilization by a biofilm community during starvation. Appl. Environ. Microbiol. 61(1), 152-158.

Yamada M, Ikegami A, Kuramitsu HK. 2005. Synergistic biofilm formation by Treponema denticola and Porphyromonas gingivalis. FEMS Microbiol. Lett. 250(2), 271-277.

Yildiz FH, Schoolnik GK. 1999. Vibrio cholera O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc. Natl. Acad. Sci. USA 96, 4028-4033.

Yildiz FH, Dolganov NA, Schoolnik GK. 2001. VpsR, a member of the response regulators of the two-component regulatory systems, is required for expression of vps biosynthesis genes and EPS(ETr)- associated phenotypes in Vibrio cholerae O1 El Tor. J. Bacteriol.183, 1716-1726.

Zhu J, Mekalanos JJ. 2003. Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev. Cell 5, 647-656.