Biometric study and length–weight relation of the sea-bream Sparus aurata (sparidae) in the two gulfs of Skikda and Annaba (Northern east of Algeria)

Paper Details

Research Paper 01/07/2017
Views (568)
current_issue_feature_image
publication_file

Biometric study and length–weight relation of the sea-bream Sparus aurata (sparidae) in the two gulfs of Skikda and Annaba (Northern east of Algeria)

Faiza Oudjane, Naziha Bourenane, Tahar Wafa
Int. J. Biosci. 11(1), 83-88, July 2017.
Copyright Statement: Copyright 2017; The Author(s).
License: CC BY-NC 4.0

Abstract

This study deals with growth biometrics of royal sea-bream Sparus aurata, Sparidae of Annaba and Skikda gulfs (Northeast of Algeria). Several biometric studies were carried out on Algerian northeastern coast’s sea bream “sparidas” (Derbal et al., 2007; Chaoui et al., 2001), but the main part of the investigated subjects is Sparus aurata of lagoon origin.  This study aims at bringing complementary knowledge to further studies, on royal sea-bream marinates, in the gulf of Annaba where these species take advantage of the Mediterranean climate, in order to make new data available, referring to the gulf of Skikda.  All the measures were taken from April 2013 to May 2014, on149 specimens, of a length ranging between 17 cm and 48 cm, and a weight ranging between 65 g and 1440 g.In biometrics differents aspects are dealth with,regarding the relation Length (L)–weight(W). The morphological study shows that metric characters concerned do not grow all in isometric way compared tooverall or cephalic length. Cases of raising or undervaluing allometry are highlighted. The number of branchiospines on the level of the first left branchial arc is in fact the numerical character representing greatest dispersion.The number of branchiospines on its first branchial left arc holds a modal value equal to 12. In general, the weight of S. aurata grows proportional to its length, mathematical expression of length-weight relation is monthly and globally established to the whole population. The results highlight a highly significant correlation between the general length and weight of the fish.

Chaoui L, Quignard JP, Kara MH. 2001. Différenciation morphologique de deux populations marine et lagunaire de daurade Sparus aurata (Linné, 1758). Rapport Communiquer internationale Mer Méditerranée 36, 371.

Dagnélie P. 1975. Théorie et méthodes statistiques, Vol. 1: la statistique descriptive et les fondements de l’inférence statistique. Duculoted., Gembloux. 378 p.

Derbal F, Nouacer S, Kara MH. 2007. Composition et variations du régime alimentaire du sparaillon Diplodus annularis (Sparidae) du golfe d’Annaba (Est de l’Algérie). Cybium 31, 443-450.

Fischer W, Bauchot ML, Schneider M. 1987. Fiches FAO d’identification des espèces pour les besoins de la pêche. (Révision 1). Méditerranée et mer Noire. Zone de pêche 37. Volume 2. Vertébrés. FAO (Rome), 761-1530.

Harrag A. 2002. Contribution à la biologie du sar tambour Diplodus cervinuscervinus (Lowe, 1838) des côtes est algériennes. Mémoire d’Ingénieur.

Koumoundouros G, Gagliardi F, Divanach P, Boglione C, Cataudella S, Kentouri M. 1997. Normal and abnormal osteological development of caudal fin in Sparus aurata L. fry. Aquaculture, 149(3-4), 215-226.

Loy A, Boglione C, Cataudella S. 1999. Geometric morphometrics and morphoanatomy: a combined tool in the study of sea bream (Sparus aurata) shape. Journal ApplideIchthyology 15, 104-110.

Minitab Inc. 2014. Statistical software (release 16). Computer software. State college, PA: Minitab, INC www.minitab.com

Mouine N, Chakroun-Marzouk N, Ktari 2004. Caractéristiques morphologiques et méristiques de Diplodu ssargus (Linnaeus, 1758) du golfe de Tunis. Rapport Communiquer internationale Mer Méditerranée., 37, 404 p.

Nouacer S. 2002. Biologie et écologie du sparaillon Diplodus annularis du Golfe d’Annaba, Thèse de Magister, Université d’Annaba, Algérie, 62 p + Biblio. Annexes.

Prager MH, Saila SB, Recksiek CW. 1989. Fishparm: a microcomputer program for parameter estimation of nonlinear models in fishery science. Second edition. Old Dominion University. Oceanography Technical Report 87-10.

Teissier G. 1948. La relation d’allométrie: sa signification statistique et biologique. Biometrics, 4 (1), 14-53.

Xlstat. 2016. Data Analysis and Statistical Solution for Microsoft Excel. [Addinsoft]. Paris, France (2016).

Whitehead PGP, Bauchot ML, Hureau JC, Nielsen J, Tortonese E. 1984-1986. Fishes of the north eastern Atlantic and the Mediterranean, Volume I-III. Paris: UNESCO.

Related Articles

Evaluating the ecophysiological response of marine fungi to textile dye degradation potential

S. Sathya, G. Kanimozhi, A. Panneerselvam, Int. J. Biosci. 27(3), 12-21, September 2025.

Phytochemical analysis and antibacterial activity of Biophytum sensitivum

H. P. Reni Christabel, T. S. Dhanaraj, V. Ramamurthy, Int. J. Biosci. 27(2), 300-305, August 2025.

Phytochemical and antibacterial screening of different solvent extracts of Mentha spicata

V. R. Rakhi, T. S. Dhanaraj, V. Ramamurthy, Int. J. Biosci. 27(2), 280-286, August 2025.

Physico-chemical characterization of soils in two peri-urban lowlands: Implications for the sustainability of rice cultivation in Korhogo (northern Côte d’Ivoire)

Konan Kouamé Firmin, Nangah Krogba Yves, Touré Béssimory, Coulibaly Tchowa Bintou, Kouassi Anoma Jonathan Christian, Bayala Roger, Bakayoko Sidiky, Int. J. Biosci. 27(2), 270-279, August 2025.

Yield performance assessment of different mustard cultivars under field conditions

Md. Khan Jahan Ali, Md. Moshiur Rahman, Kamrun Nahar, Sharmin Ara Jannat, Mst. Khadija Khatun, Sushan Chowhan, Md. Habibur Rahman, Int. J. Biosci. 27(2), 264-269, August 2025.

Species composition of xylomicobiota of some woody plants distributed in Azerbaijan

K. F. Bakhshaliyeva, V. Y. Hasanova, N. R. Namazov, B. N. Aliyeva, S. C. Garayeva, S. E. Nagiyeva, P. Z. Muradov, Int. J. Biosci. 27(2), 254-263, August 2025.