Biomonitoring of heavy metals by lichen Xanthoria parietina in Bejaia area (East Algeria)

Paper Details

Research Paper 01/06/2021
Views (494) Download (52)
current_issue_feature_image
publication_file

Biomonitoring of heavy metals by lichen Xanthoria parietina in Bejaia area (East Algeria)

Amina Belguidoum, Takia Lograda, Badreddine Bedjaoui, Messaoud Ramdani
Int. J. Biosci.18( 6), 51-64, June 2021.
Certificate: IJB 2021 [Generate Certificate]

Abstract

The metallic air pollution in the Bejaia region (northern Algeria) were examined, using the lichen Xanthoria parietina as a bio-monitoring organism. The biological material from 42 stations were sampled and analyzed by flame atomic absorption spectrophotometry (AASF). In order to determine the relationship between the potential sources of contaminants in the study area and the degree of deposition of metals in air, five heavy metals (Cd, Cu, Pb, Mn, and Ag) were analyzed. The results show that the metal contents recorded in the various sampled stations are fluctuating and lead to the following decreasing series: Pb> Mn> Cu> Ag> Cd. The air quality in the town of Amizour is considerably poor compared to the rest of the studied stations. The Pb and Mn levels are very high in all stations with an average of (134.62 ± 148.53 mg/kg and 290.88 ± 175.13 mg/kg) respectively. The highest concentrations of heavy metals were observed around the municipalities of Bejaia, Akbou and Tichy. The current situation suggests an obvious need to mitigate atmospheric pollution by MTE and to control the emissions of toxic metals, in particular Pb from industrial sources and road traffic in large cities.

VIEWS 38

Adjiri F, Ramdani M, Lograda T, Chalard P. 2018. Bio monitoring of metal trace elements by epiphytic lichen in the Bordj Bou Arreridj area, east of Algeria. Scholars Academic Journal of Biosciences 6(2), 199–208. http://dx.doi.org/10.21276/sajb.2018.6.2.12

Aghaei A, Khademi H. 2016. Evaluating and determining of heavy metals in the atmospheric dust by using statistical methods (PCA and CA). Algerian Journal of Environmental Science and Technology 2(3), 6–16. https://www.asjp.cerist.dz/en/article/19816

Agnan Y, Sejalon-delmas N, Claustres A, Probst A. 2015. Investigation of spatial and temporal metal atmospheric deposition in France through lichen and moss bioaccumulation over one century. Science of the Total Environment 529, 285–296. https://doi.org/10.1016/j.scitotenv.2015.05.083

Ahmad I, Khan B, Khan S, Khan MT, Schwab AP. 2018. Assessment of lead exposure among automobile technicians in Khyber Pakhtunkhwa, Pakistan. Science of the Total Environment 633, 293–299.‏ http://dx.doi.org/10.1016/j.scitotenv.2018.03.160

Ahmed MM, Doumenq P, Awaleh MO, Syakti AD, Asia L, Chiron S. 2017. Levels and sources of heavy metals and PAHs in sediment of Djibouti-city (Republic of Djibouti). Marine pollution bulletin 120(1-2), 340–346.‏ https://doi.org/10.1016/j.marpolbul.2017.05.055

Alkama R, Adjabi S, Idir FA. 2009. Air Pollution in Bejaia City (Algeria): Measurements and Forecasts. Polish Journal of Environmental Studies 18(5), 769–773. http://www.pjoes.com/Air-Pollution-in-Bejaia-City-Algeria-r-nMeasurements-and-Forecasts,88293,0,2.html

Antonucci A, Vitali M., Avino P, Manigrasso M, Protano C. 2016. Sensitive multiresidue method by HS-SPME/GC-MS for 10 volatile organic compounds in urine matrix: a new tool for bio monitoring studies on children. Analytical and Bioanalytical Chemistry 408, 5789–5800. http://dx.doi.org/10.1007/s00216-016-9682-x

Augusto S, Pinho P, Santos A, Botelho MJ, Palma-oliveira J, Branquinho C. 2015. Declining trends of PCDD/Fs in lichens over a decade in a Mediterranean area with multiple pollution sources. Science of the Total Environment 508, 95–100. https://doi.org/10.1016/j.scitotenv.2014.11.065

Austruy A. 2012. Aspects physiologiques et biochimiques de la tolérance à l’arsenic chez les plantes supérieures dans un contexte de phytostabilisation d’une friche industrielle. Sciences agricoles. Université Blaise Pascal – Clermont-Ferrand II, p 300. https://tel.archives-ouvertes.fr/tel-00745701/document

Bagnato E, Sproveri M, Barra M, BItetto M, Bonsignore M, Calabrese S, Stefano VD, Oliveri E, Parello F, Mazzola S. 2013. The sea–air exchange of mercury (Hg) in the marine boundary layer of the Augusta basin (southern Italy): Concentrations and evasion flux. Chemosphere 93(9), 2024–2032. http://dx.doi.org/10.1016/j.chemosphere.2013.07.025

Balabanova B, Stafilov T, Sajn R, Baceva K. 2012. Characterization of heavy metals in lichen species Hypogymnia physodes and Evernia prunastri due to bio monitoring of air pollution in the vicinity of copper mine. International Journal of Environmental Research 6(3), 779–794.‏ http://eprints.ugd.edu.mk/id/eprint/5060

Bargagli R. 2016. Moss and lichen biomonitoring of atmospheric mercury: a review. Science of the Total Environment 572, 216–231. ‏http://dx.doi.org/10.1016/j.scitotenv.2016.07.202

Belguidoum A, Lograda T, Ramdani M. 2020. Heavy metals accumulation in Hertiacheirifolia along the highway in Setif region, Algeria. Biodiversitas Journal of Biological Diversity 21(6), 2786–2793. ‏ http://dx.doi.org/10.13057/biodiv/d210655

Belkhiri A, Djemili A. 2016. Le rôle des plates-formes logistique extra-portuaires dans la réduction des couts logistiques des operateurs du commerce extérieur ? Cas de l’entreprise portuaire de Bejaia–Algérie. Lucrările Seminarului Geografic” Dimitrie Cantemir” 43, 33–44. http://dx.doi.org/10.15551/lsgdc.v43i0.03‏

Benaissa F, Maesano CN, Alkama R, Annesi-Maesano I. 2018. Analysis of PM concentrations in the urban area of Bejaia. Environment Protection Engineering 44(1), 75–84. http://dx.doi.org/10.5277/epe18016

Benaissa F, Maesano CN, Alkama R, Annesi-Maesano I. 2016. Short-term health impact assessment of urban PM10 in Bejaia City (Algeria). Canadian respiratory journal 6(4), 1–6.‏ http://dx.doi.org/10.1155/2016/8209485

Bermejo-Orduna R, Mcbride JR, Shiraishi K, Elustondo D, Lasheras E, Santamaría JM. 2014. Biomonitoring of traffic-related nitrogen pollution using Letharia vulpina (L.) Hue in the Sierra Nevada, California. Science of the total environment 490, 205–212.‏ https://doi.org/10.1016/j.scitotenv.2014.04.119

Boamponsem LK, Adam JI, Dampare SB, Nyarko BJB, Essumang DK. 2010. Assessment of atmospheric heavy metal deposition in the Tarkwa gold mining area of Ghana using epiphytic lichens. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268(9), 1492–1501.‏ https://doi.org/10.1016/j.nimb.2010.01.007

Chen B, Stein AF, Castell N, Gonzalez-Castanedo Y, De La Campa ASA, De La Rosa JD. 2016. Modeling and evaluation of urban pollution events of atmospheric heavy metals from a large Cu-smelter. Science of the Total Environment 539, 17–25. http://dx.doi.org/10.1016/j.scitotenv.2015.08.117

Conti Me, Finoia Mg, Bocca B, Mele G, Alimonti A, Pino A. 2012. Atmospheric background trace elements deposition in Tierra del Fuego region (Patagonia, Argentina), using transplanted Usnea barbata lichens. Environmental monitoring and assessment 184(1), 527–538. ‏ http://dx.doi.org/10.1007/s10661-011-1985-y

Coufalík P, Matousek T, Krumal K, Vojtísek-Lom M, Beránek V, Mikuška P. 2019. Content of metals in emissions from gasoline, diesel, and alternative mixed biofuels. Environmental Science and Pollution Research 26(28), 29012–29019.‏ http://dx.doi.org/10.1007/s11356-019-06144-4

Cram S, De Leon Cap, Fernandez P, Sommer I, Rivas H. and MORALES L.M. 2006. Assessment of trace elements and organic pollutants from a marine oil complex into the coral reef system of Cayo Arcas, Mexico. Environmental monitoring and assessment 121(1-3), 127–149.‏ http://dx.doi.org/10.1007/s10661-005-9111-7

Cuny D, Davranche L, Thomas P, Kempa M, Van Haluwyn C. 2004. Spatial and temporal variations of trace element contents in Xanthoria parietina thalli collected in a highly industrialized area in northern France, as an element for a future epidemiological study. Journal of Atmospheric Chemistry 49(1-3), 391-401. http://dx.doi.org/10.1007/s10874-004-1254-3

Daillant O. 2003. Lichens et accumulation des métaux lourds. Bull. Inform. Ass. Fr. Lichénologie 28(1), 31–43. http://www.afl-lichenologie.fr/telecharger/Bull_AFL_old/Bull_2003/AFL_2003_1_31_43_O_Daillant.pdf

Demiray Ad, Yolcubal I, Akyol Nh, Çobanoğlu 2012. Biomonitoring of airborne metals using the Lichen Xanthoria parietina in Kocaeli Province, Turkey. Ecological indicators 18, 632–643.‏ http://dx.doi.org/10.1016/j.ecolind.2012.01.024

Demkova L, Arvay J, Bobuska L, Hauptvogl M, Hrstkova M. 2019. Open mining pits and heaps of waste material as the source of undesirable substances: biomonitoring of air and soil pollution in former mining area (Dubnik, Slovakia). Environmental Science and Pollution Research 26(34), 35227–35239.‏ http://dx.doi.org/10.1007/s11356-019-06582-0

Demkova L, Bobulska L, Arvay J, Jezny T, Ducsay L. 2017. Biomonitoring of heavy metals contamination by mosses and lichens around Slovinky tailing pond (Slovakia). Journal of Environmental Science and Health Part A 52(1), 30–36. https://doi.org/10.1080/10934529.2016.1221220

Demkova La, Obona J, Arvay J, Michalkova J, Losak T. 2019. Biomonitoring road dust pollution along streets with various traffic densities. Environment 28(5), 3687–3696. https://doi.org/10.15244/pjoes/97354

Douibi C, Ramdani M, Khelfi A, Benharket R, Lograda T, Chalard P. 2015. Biomonitoring of heavy metals by lichens in Setif area, east of Algeria. United Journal Environmental Science and Toxicology 1(1), 001–013. http://www.unifiedjournals.org/ujest‏

Dron J, Austruy A, Agnan Y, Ratier A, Chamaret P. 2016. Biomonitoring with lichens in the industrial oportuary zone of Fos-sur-Mer (France): Feedback on three years of monitoring at a local collectivity scale. Pollution atmosphérique N 228(1), 1–17.‏ https://doi.org/10.4267/pollutionatmospherique.5392

Garty J. 2001. Biomonitoring atmospheric heavy metals with lichens: theory and application. Critical Reviews in Plant Sciences 20(4), 309–371.https://doi.org/10.1080/20013591099254

Gauslaa Y, Yemets OA, Asplund J, Solhaug KA. 2016. Carbon based secondary compounds do not provide protection against heavy metal road pollutants in epiphytic macrolichens. Science of the Total Environment 541, 795–801. https://doi.org/10.1016/j.scitotenv.2015.09.114

Gonzalez-Castanedo Y, Moreno T, Fernandez-Camacho R, De La Campa AMS, Alastuey A, Querol X, Rosa J. 2014. Size distribution and chemical composition of particulate matter stack emissions in and around a copper smelter. Atmospheric Environment 98, 271–282.‏ https://doi.org/10.1016/j.atmosenv.2014.08.057

Gu JD. 2018. Mining, pollution and site remediation. International Bio deterioration and Biodegradation 128, 1–2.‏ http://dx.doi.org/10.1016/j.ibiod.2017.11.006

Hamma W, Petrişor AI. 2018. Urbanization and risks: case of Bejaia city in Algeria. Human Geographies 12(1), 97–114.‏

Hébrard-Labit C, Meffray L. 2004. Comparaison de méthodes d’analyse des éléments traces métalliques (ETM) et des hydrocarbures aromatiques polycycliques (HAP) sur les sols et les végétaux. [Rapport de recherche] Centre d’études sur les réseaux, les transports, l’urbanisme et les constructions publiques (CERTU) 120 p. http://www.bv.transports.gouv.qc.ca/mono/0968637.pdf

Kazimirova A, Peikertova P, Barancokova M, Staruchova M, Tulinska J, Vaculik M, Vavra I, Kukutschova J, Filip P, Dusinska M. 2016. Automotive airborne brake wear debris nanoparticles and cytokinesis-block micronucleus assay in peripheral blood lymphocytes: a pilot study.  Environmental research 148, 443–449.‏ http://dx.doi.org/10.1016/j.envres.2016.04.022Li,Z.

Kittner N, Fadadu RP, Buckley HL, Schwarzman MR, Kammen DM. 2018. Trace metal content of coal exacerbates air-pollution-related health risks: the case of lignite coal in Kosovo. Environmental Science and Technology 52(4), 2359–2367.‏ http://dx.doi.org/10.1021/acs.est.7b04254

Kresovich JK, Erdal S, Chen HY, Gann PH, Argos M, Rauscher GH. 2019. Metallic air pollutants and breast cancer heterogeneity. Environmental Research 177, 108639. http://dx.doi.org/10.1016/j.envres.2019.108639

Lin M, Gui H, Wang Y, Peng W. 2017. Pollution characteristics, source apportionment, and health risk of heavy metals in street dust of Suzhou, China. Environmental Science and Pollution Research 24(2), 1987–1998.‏ http://dx.doi.org/10.1007/s11356-016-7934-0

Liu HJ, Fang SB, Liu SW, Zhao LC, Guo XP, Jiang YJ, Liu XD, Xia Y, Wang YD, Wu QF. 2016. Lichen elemental composition distinguishes anthropogenic emissions from dust storm inputs and differs among species: Evidence from Xilinhot, Inner Mongolia. China Scientific reports 6, 34694.‏ http://dx.doi.org/10.1038/srep34694

Liu HJ, Zhao LC, Fang SB, Liu SW, Hu JS, Wang L, Liu XD, Wu QF. 2016. Use of the lichen Xanthoria mandschurica in monitoring atmospheric elemental deposition in the Taihang Mountains, Hebei, China. Scientific reports 6, 23456.‏ http://dx.doi.org/10.1038/srep23456

Lodenius M, Kiiskinen J, Tulisalo E. 2010. Metal levels in an epiphytic lichen as indicators of air quality in a suburb of Helsinki, Finland. Boreal Environment Research 15(4), 446–452. https://www.researchgate.net/publication/47930270_Metal_levels_in_an_epiphytic_lichen_as_indicators_of_air_quality_in_a_suburb_of_Helsinki_Finlad

Ma Z, Van Der Kuijp TJ, Yuan Z, Huang L. 2014. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Science of the Total Environment 468, 843–853. http://dx.doi.org/10.1016/j.scitotenv.2013.08.090.

Monaci F, Moni F, Lanciotti E, Grechi D, Bargagli R. 2000. Biomonitoring of airborne metals in urban environments: new tracers of vehicle emission, in place of lead. Environmental Pollution 107(3), 321-327. https://doi.org/10.1016/S0269-7491(99)00175-X

Mwaanga P, Silondwa M, Kasali G, Banda PM. 2019. Preliminary review of mine air pollution in Zambia. Heliyon 5(9), e02485.‏ http://dx.doi.org/10.1016/j.heliyon.2019.e02485

Nascimbene J, Tretiach M, Corana F, Lo Schiavo F, Kodnik D, Dainese M, Mannucci B. 2014. Patterns of traffic polycyclic aromatic hydrocarbon pollution in mountain areas can be revealed by-lichen biomonitoring: a case study in the dolomites (Eastern Italian Alps). Science of the Total Environment 475, 90–96. https://doi.org/10.1016/j.scitotenv.2013.12.090

Nguyen Van T, Ozaki A, Nguyen ThoH, Nguyen DucA, Tran ThiY, Kurosawa K. 2016. Arsenic and heavy metal contamination in soils under different land use in an estuary in Northern Vietnam. International Journal of Environmental research and public health 13(11), 1091.‏ http://dx.doi.org/10.3390/ijerph13111091

Nimis PL, Lazzarin G, Lazzarin A, Skert N. 2000. Bio monitoring of trace elements with lichens in Veneto (NE Italy). Science of the Total Environment 255(1-3), 97–111.‏ https://doi.org/10.1016/S0048-9697(00)00454-X

Onakpa MM, Njan AA, Kalu OC. 2018. A review of heavy metal contamination of food crops in Nigeria. Annals of Global Health 84(3), 488. http://dx.doi.org/10.29024/aogh.2314

Pandey B, Agrawal M, Singh S. 2014. Assessment of air pollution around coal mining area: Emphasizing on spatial distributions, seasonal variations and heavy metals, using cluster and principal component analysis. Atmospheric Pollution Research 5(1), 79–86. http://dx.doi.org/10.5094/apr.2014.010

Paoli L, Winkler A, Guttová A, Sagnotti L, Grassi A, Lackovičová A, Senko D, Loppi S. 2017. Magnetic properties and element concentrations in lichens exposed to airborne pollutants released during cement production. Environmental Science and Pollution Research 24(13), 12063–12080.‏ http://dx.doi.org/10.1007/s11356-016-6203-6

Parviainen A, Casares-Porcel M, Marchesi C, Garrido CJ. 2019. Lichens as a spatial record of metal air pollution in the industrialized city of Huelva (SW Spain). Environmental Pollution 253, 918-929. ‏ http://dx.doi.org/10.1016/j.envpol.2019.07.086

Parzych A, Astel A, Zduńczyk A, Surowiec T. 2016. Evaluation of urban environment pollution based on the accumulation of macro-and trace elements in epiphytic lichens. Journal of Environmental Science and Health Part A 51(4), 297–308. ‏ http://dx.doi.org/10.1080/10934529.2015.1109387

Pascaud G, Leveque T, Soubrand M, Boussen S, Joussein E, Dumat C. 2014. Environmental and health risk assessment of Pb, Zn, As and Sb in soccer field soils and sediments from mine tailings: solid speciation and bio accessibility. Environmental Science and Pollution Research 21(6), 4254–4264.‏ http://dx.doi.org/10.1007/s11356-013-2297-2.

Pelletier E, Campbell PG. 2004. Écotoxicologie moléculaire : Principes fondamentaux et perspectives de développement. Presses de l’Université du Québec, p 502.

Peng X, Shi GL, Zheng J, Liu JY, Shi XR, Xu J, Feng YC. 2016. Influence of quarry mining dust on PM 2.5 in a city adjacent to a limestone quarry: Seasonal characteristics and source contributions. Science of the Total Environment 550, 940–949.‏ http://dx.doi.org/10.1016/j.scitotenv.2016.01.195

Piazzolla D, Scanu S, Frattarelli FM, Mancini E, Tiralongo F, Brundo MV, Tibullo D, Pecoraro R, Copat C, Ferrante  M, Marcelli M. 2015. Trace-metal enrichment and pollution in coastal sediments in the Northern Tyrrhenian Sea, Italy. Archives of Environmental Contamination and Toxicology 69(4), 470–481.‏ http://dx.doi.org/10.1007/s00244-015-0166-3

Ramic E, Huremovic J, Muhic-Sarac T, Đug S, Zero S, Olovcic A. 2019. Biomonitoring of Air Pollution in Bosnia and Herzegovina Using Epiphytic Lichen Hypogymnia physodes. Bulletin of Environmental Contamination and Toxicology 102(6), 763–769.‏ http://dx.doi.org/10.1007/s00128-019-02595-0

Ratier A, Dron J, Revenko G, Austruy A, Dauphin CE, Chaspoul F, Wafo E. 2018. Characterization of atmospheric emission sources in lichen from metal and organic contaminant patterns. Environmental Science and Pollution Research 25(9), 8364–8376. http://dx.doi.org/10.1007/s11356-017-1173-x

Stamenkovic SS, Mitrovic TL, Cvetkovic VJ, Krstic NS, Baosic R, Markovic MS, Cvijan MV. 2013. Biological indication of heavy metal pollution in the areas of Donje Vlase and Cerje (southeastern Serbia) using epiphytic lichens. Archives of Biological Sciences 151–159.‏ http://dx.doi.org/10.2298/ABS1301151S

Tokalioglu S, Kartal S. 2006. Multivariate analysis of the data and speciation of heavy metals in street dust samples from the Organized Industrial District in Kayseri (Turkey). Atmospheric Environment 40(16), 2797–2805. https://doi.org/10.1016/j.atmosenv.2006.01.019

Vitali M, Antonucci A, Owczarek M, Guidotti M, Astolfi ML, Manigrasso M, Avino P, Bhattacharya B, Protano C. 2019. Air quality assessment in different environmental scenarios by the determination of typical heavy metals and Persistent Organic Pollutants in native lichen Xanthoria parietina. Environmental Pollution 254, 113013.‏ https://doi.org/10.1016/j.envpol.2019.113013

Wan D, Han Z, Yang J, Yang G, Liu X. 2016. Heavy metal pollution in settled dust associated with different urban functional areas in a heavily air-polluted city in North China. International Journal of Environmental Research and Public Health 13(11), 1119. http://dx.doi.org/10.3390/ijerph13111119

Wang J, Wu Q, Liu J, Yang H, Yin M, Chen S, Guo P, Ren J, Luo X, Linghu W, Huang Q. 2019. Vehicle emission and atmospheric pollution in China: problems, progress, and prospects. Environmental Science PeerJ 7, e6932.‏ https://doi.org/10.7717/peerj.6932

Weinmayr G, Pedersen M, Stafoggia M, Andersen ZJ, Galassi C, Munkenast J, Pyko A. 2018. Particulate Matter Air Pollution components and incidence of cancers of the stomach and the upper aerodigestive tract in the European Study of Cohorts of Air Pollution Effects (ESCAPE). Environment international 120, 163–171.‏ http://dx.doi.org/10.1016/j.envint.2018.07.030

Will-Wolf S, Jovan S, Amacher MC. 2017. Lichen elemental content bioindicators for air quality in upper Midwest, USA: a model for large-scale monitoring. Ecological Indicators 78, 253–263. http://dx.doi.org/10.1016/j.ecolind.2017.03.017

Yamina O, M’hamed M, Nadera A, Amine H, Mokhtar A. 2015. Bioaccumulation de pollution plombique d’origine routière au moyen d’une mousse (Bryum argenteum) dans la ville de Tiaret (Algérie) : Classe de pollution et cartographie. European Scientific Journal 11(8), 105–121. http://eujournal.org/index.php/esj/issue/view/174

Zhang Y, Horowitz H, Wang J, Xie Z, Kuss J, Soerensen AL. 2019. A Coupled Global Atmosphere-Ocean Model for Air-Sea Exchange of Mercury: Insights into Wet Deposition and Atmospheric Redox Chemistry. Environmental science and technology 53(9), 5052–5061. ‏ http://dx.doi.org/10.1021/acs.est.8b06205