Welcome to International Network for Natural Sciences | INNSpub

Cacao growers profiling in one municipality of Region 2 Philippines: Basis for sustainable development program

Research Paper | December 1, 2021

| Download 19

Bernard P. Madarang, Wilfredo M. Perciano, Gilbert C. Magulod Jr.

Key Words:

Int. J. Biosci.19( 6), 129-137, December 2021

DOI: http://dx.doi.org/10.12692/ijb/19.6.129-137


IJB 2021 [Generate Certificate]


The Cagayan Valley Regional Development Agenda recognized cacao as a possible product commodity in Region 02, Philippines to meet global demand. The Agricultural Training Institute (ATI) in Cagayan Valley has indicated that cacao production has industry potential. Reviving the cacao sector in Region 02 would help farmers increase their income. ATI-RTC 02 provides constant support to farmers to improve their growing techniques and understanding of cacao. Providing a detailed picture of the difficulties and restrictions faced by cacao producers in the municipality will pave the way for improved policy orientations that would increase productivity and sustainability of cacao produced in the region. This was a descriptive survey. Using a pre-tested interview form, primary data was obtained. The study will focus on 35 cacao producers. The names of these cacao growers were obtained from the Lasam Municipal Agriculturist. The data will be examined using frequency, mean, percentage, and standard deviation. Because most cacao producers have less than one hectare plantation, there is a need to encourage them to extend their lands so that sufficient supply of cacao beans would be secured. Cacao producers should form an organization, processing equipment for growers should be explored, and more production and processing training should be provided. Because climate affects cacao trees, wind breaks should be used and organic insecticides should be used to combat pests and illnesses.


Copyright © 2021
By Authors and International Network for
Natural Sciences (INNSPUB)
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Cacao growers profiling in one municipality of Region 2 Philippines: Basis for sustainable development program

Abdulla F, Abdulla C, Eslamian S. 2021. Concept and technology of rainwater harvesting. Handbook of water harvesting and conservation: basic concepts and fundamentals 1-16.

Aneani F, Ofori-Frimpong K. 2013. An analysis of yield gap and some factors of cocoa (Theobroma cacao) yields in Ghana. Sustainable Agriculture Research 2(526-2016-37857).

Binam JN, Tonye J, Wandji N, Nyambi G, Akoa M. 2004. ”Factors affecting the technical efficiency among smallholder farmers in the slash and burn Agriculture zone of Cameroon”. Food Policy 29(5), 531-45.

Counet C, Ouwerx C, Rosoux D, Collin S. 2004. Relationship between procyanidin and flavor contents of cocoa liquors from different origins. Journal of Agricultural and Food Chemistry 52(20), 6243e6249. DOI: 10.1021/jf040105b.

Hainmueller J, Hiscox M, Tampe M. 2011. Sustainable development for cocoa farmers in Ghana. Cambirdge (MA): MIT and Harvard University.

Journals B, Joel N, Piusm B. 2013. Production and quality evaluation of cocoa products (plain cocoa powder and chocolate). American Journal of Food and Nutrition.

Konogr J, Hinehh M, de Walle M, Afoakwa D, Boeckx E, Dewettinck P. 2016. Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile- A review. Retrived from https://www.sciencedirect.com/science/article/pii/S0963996916300163

López ME, Ramírez OA, Dubón A, Ribeiro THC, Díaz FJ, Chalfun-Junior A. 2021. Sexual compatibility in cacao clones drives arrangements in the field leading to high yield. Scientia Horticulturae 287, 110276.

Madarang BP, Magulod Jr GC, Ramos HJB. 2019. Design and Development of Solar-Powered Mechanical Dryer for Small-Scale Cacao Processing. Asia Pacific Journal of Multidisciplinary Research 7(2).

Motamayor JC, Lachenaud P, Wallace SA, Silva E, Mota J, Loor R, Kuhn DN, Brown JS. 2008. Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PLoS One 3(10), e3311. DOI: 10.1371/journal.pone.0003311.

Ofori A, Padi FK. 2020. Reciprocal differences and combining ability for growth and yield components in cacao (Theobroma cacao L.): a case of recommended cacao varieties in Ghana. Euphytica 216(12), 1-14.

Ogunlade MOOluyole KA, Aikpokpodion P.O.. 2009. An Evaluation of the Level of Fertilizer Utilization for Cocoa Production in Nigeria. Journal of Human Ecology 25(3), 175-178.

Richards N. 2007. Cocoa and cocoa-based Intercropping. Field Notes: Cebu City. ACDIVOCA Philippines 2 p.

Richards N. 2011. Cocoa Value Chain Growth and Agricultural Finance in Mindanao. [Online] Land Bank of the Philippines-Agricultural Credit Support Project. [2013, October 11].

Saltini R, Akkerman R, Frosch S. 2013. Optimizing chocolate production through traceability: A review of the influence of farming practices on cocoa bean quality. Retrieved from https://www. sciencedirect.com/science/article/pii/S0956713512.

Sasmita KD, Anas I, Anwar S, Yahya S, Djajakirana G. 2017. Application of biochar and organic fertilizer on acid soil as growing medium for Cacao (Theobroma cacao L.) seedlings. International Journal of Sciences: Basic and Applied Research 36(5), 261-273.

Singh A, Gautam US, Singh R, Paliwal D. 2014. Ergonomic study of farm women during wheat harvesting by improved sickle. African Journal of agricultural research 9(18), 1386-1390.

Sumitha S, Balakrishnan S, Shoba N, Kumar M, Jeyakumar P, Jegadeeswari V. 2018. Growth and yield performance of cocoa (Theobroma cacao L.) varieties under Tamil Nadu condition. Journal of Pharmacognosy and Phytochemistry 7(5), 591-594.

Tomlins KI, Baker DM, Daplyn P, Adomako D. 1993. Effect of fermentation and drying practices on the chemical and physical profiles of Ghana cocoa. Food Chemistry 46, 257e263.

Wibaux T, Konan DC, Snoeck D, Jagoret P, Bastide P. 2018. Study of tree-to-tree yield variability among seedling-based cacao populations in an industrial plantation in côte d’ivoire. Experimental Agriculture 54(5), 719-730.