Calcium carbonate forms applied to purple sweet corn in Capiz Philippines

Paper Details

Research Paper 01/09/2020
Views (971)
current_issue_feature_image
publication_file

Calcium carbonate forms applied to purple sweet corn in Capiz Philippines

Jun Art M. Casumlong, Snowie Jane C. Galgo
Int. J. Biosci. 17(3), 201-205, September 2020.
Copyright Statement: Copyright 2020; The Author(s).
License: CC BY-NC 4.0

Abstract

Calcium carbonate is an active ingredient in agricultural lime. It is commonly found in rocks and the main component of pearls and shells of marine organisms, snails, and poultry eggs. Calcium carbonate forms such as lime, eggshells, and oyster shells were utilized to investigate its effect on the growth and yield characteristic of purple sweet corn planted in acidic upland soil in Quevedo Maayon Capiz Philippines. The experiment was laid out in a Randomized Complete Block Design (RCBD) with four treatments replicated three times. The treatments used were the following: T1- soil (control), T2- soil + lime, T3- soil + eggshell, T4- soil + oyster shell. Results revealed no significant difference in the plant height at 15, 30, 45, and 60 days after planting (DAP), leaf area index (LAI), herbage weight, length, diameter, and weight of ears. Numerically, purple sweet corn applied with eggshells produced the tallest plant, longest and widest ears, while those applied with oyster shells got the highest leaf area index. Thus, the inclusion of eggshells and oyster shells has the potential in agricultural liming with appropriate rates of chemical fertilizer to obtained maximum yield in purple sweet corn production.

Chulze SN. 2010. Strategies to reduce mycotoxin levels in maize during storage: a review, Food Additives & Contaminants: Part A: Chemistry, Analysis, Control, Exposure & Risk Assessment, 27(5), 651-657. http://dx.doi.org/10.1080/19440040903.573032

Connor DJ, Loomis RJ, Cassman KG. 2011. Crop Ecology: Productivity and Management in Agricultural Systems, 2nd edition. Cambridge University Press, Cambridge.

Duque CM, Cagmat RB, Daquiado NP, Maglinao AR. 1995. Management of acid soils for sustainable food crop production in the Philippines. In: Date R.A., Grundon N.J., Rayment G.E., Probert M.E. (eds) Plant-Soil Interactions at Low pH: Principles and Management. Developments in Plant and Soil Sciences 64, Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0221-6_120

FAO. 2018. FAOSTAT, Production. Cited August 8, 2020. Retrieved from: http://www.fao.org/faostat/en/#data/QC/visualize

Goulding KWT, McGrath SP, Johnston AE. 1989. Predicting the lime requirement of soils under permanent grassland and arable crops. Soil Use and Management 5, 54–57. http://dx.doi.org/10.1111/j.14752743.1989.tb00760.x

Holmes J, Sawyer J, Kassel P, Diaz DR. 2011. Using Ground Eggshells as a Liming Material in Corn and Soybean Production. Crop Management 10(1), http://dx.doi.org/10.1094/CM-2011-1129-01-RS

IRRI. 1986. Area distribution of acid upland soils in Southeast Asia. In Annual Report for 1985. IRRI, Los Baños, Laguna, Philippines p 639.

Kogbe JOS, Adediran JA. 2003. Influence of Nigeria, Phosphorus and Potassium application on the yield of maize in the savannah zone of Nigeria. African Journal of Biotechnology 2(10), 345–349. http://dx.doi.org/10.5897/AJB2003.000-1071

Lee YH, Islam SMA, Hong SJ, Cho KM, Math R, Heo JY, Kim H, Yun HD. 2010. Composted oyster shell as lime fertilizer is more effective than fresh oyster shell. Bioscience, Biotechnology, and Biochemistry 74(8), 1517-1521. http://dx.doi.org/10.1271/bbb.90642

Opala PA. 2017. Influence of Lime and Phosphorus Application Rates on Growth of Maize in an Acid Soil. Hindawi Advances in Agriculture Volume 2017. https://doi.org/10.1155/2017/7083206

Pimentel D, Patzek TW. 2005. Ethanol Production Using Corn, Switchgrass, and Wood; Biodiesel Production Using Soybean and Sunflower. Nat Resour Res 14, 65–76. http://dx.doi.org/10.1007/s11053-005-4679-8

The C, Calba H, Zonkeng C, Ngonkeu ELM, Adetimirin VO, Mafouasson HA, Meka SS, Horst WJ. 2006. Responses of maize grain yield to changes in acid soil characteristics after soil amendments. Plant and Soil 284, 45–57. http://dx.doi.org/10.1007/s11104-006-0029-9

Related Articles

Sensory evaluation of horn snail (Telescopium telescopium) patty

Ma. Isabel P. Lanzaderas, Gilbert P. Panimdim, Proceso C. Valleser Jr.*, Int. J. Biosci. 28(2), 7-16, February 2026.

Two years evolution of deltamethrin, malathion and pirimiphos-methyl resistance in Aedes aegypti from urban in peri urban sites of Ouagadougou, Burkina Faso

Hyacinthe K. Toe*, Moussa W. Guelbeogo, Soumananaba Zongo, Aboubacar Sombie, Athanase Badolo, Int. J. Biosci. 28(2), 1-6, February 2026.

Physicochemical characterization of annatto seeds (Bixa orellana) sold in Ouagadougou and their oils extracted using chemical processes

Mah Alima Esther Traoré*, Adama Lodoun, Pingdwindé Marie Judith Samadoulougou-Kafando, Nestor Beker Dembélé, Kiswendsida Sandrine Léticia Dayamba, Charles Parkouda, Int. J. Biosci. 28(1), 169-178, January 2026.

Inventory of african yam bean (Sphenostylis stenocarpa (Hochst. ex A. Rich.) Harms) diversity in some Yoruba areas of Benin

Orobiyi Azize*, Faton Manhognon Oscar Euloge, Zongo Élisabeth Aboubié, Sossou Kpèdé Nicodème, Houngbo Marcel, Dossou Pierre Fourier, Ogoudjobi Ladékpo Sylvain, Balogoun Ibouraïman, Dansi Alexandre, Lokoyêyinou Laura Estelle, Int. J. Biosci. 28(1), 161-168, January 2026.

A severe case of human hepatic fascioliasis mimicking an oncological disease in Azerbaijan

Aygun A. Azizova*, Int. J. Biosci. 28(1), 155-160, January 2026.

Combined effect of irrigation frequency and leaf harvesting intensity on soil water content and productivity of baobab (Adansonia digitata) seedlings in vegetable production

Sissou Zakari, Imorou F. Ouorou Barrè, Mouiz W. I. A. Yessoufou*, Colombe E. A. E. Elegbe, Amamath S. Boukari, P. B. Irénikatché Akponikpè, Int. J. Biosci. 28(1), 143-154, January 2026.

Develop sustainable coffee-based farming model using cash crops production

Maribel L. Fernandez, Roje Marie C. Rosqueta*, Diosa G. Alasaas, Boyet C. Pattung, Jaylord Dalapo, Janette Empleo, Int. J. Biosci. 28(1), 134-142, January 2026.

Animal anthrax in northern Tanzania (2015-2025): Epidemiological trends and frontline response capacity

Yohana Michael Kiwone*, Beatus Lyimo, Rowenya Mushi, Joram Buza, Int. J. Biosci. 28(1), 123-133, January 2026.