Chemical composition, antibacterial and antioxidant activities of Lavandula pubescens Decne essential oil from Algeria

Paper Details

Research Paper 01/01/2018
Views (427) Download (13)

Chemical composition, antibacterial and antioxidant activities of Lavandula pubescens Decne essential oil from Algeria

Djamila Hamada, Ladjel Segni, Mohammed Bilal Goudjil, Salah Eddine Benchiekh, Noureddine Gherraf
Int. J. Biosci.12( 1), 187-192, January 2018.
Certificate: IJB 2018 [Generate Certificate]


Lavandula pubescens Decne is one of five Lavandula species growing wild in Algeria.  The plant is widely used in traditional medicine. In this work, the essential oils of L. pubescens collected from El-mermothia locality in Tebessa (Algeria) were obtained by hydro-distillation, and subjected to antimicrobial and antioxidant assays. The antimicrobial activity was tested using the agar disc diffusion method, by determining the inhibition zone. The most important activity was recorded against Enterococcus faecalis (ATCC 29212) and Escherichia coli (ATCC 25922). The antioxidant activity was assessed using two methods namely DPPH and Reducing power and the results revealed  significant potency with IC50values of 17.24µg/mL and 33.38 µg/mL respectively; but still lower than that found for the standard ascorbic acid.(8.86 µg/mL and 20.06 µg/mL)


Bakkali F, Averbeck S, Averbeck D, Idaomar M. 2008. Biological effects of essential oils. A review. Food and Chemical Toxicology 46, 446–475.

Barry AL, Thornsberry C. 1991. Susceptibility test: diffusion test procedures. Manual of clinical microbiology,   American society for microbiology, 5th Ed. Washington DC: American Society for Microbiology 1117–1125.

Christaki E, Bonos E, Giannenas I, Paneri PF. 2012. Aromatic plants as a source of bioactive compounds. Agriculture 2, 228–243.

Dubai A, Alkhulaidi A. 2005.Medicinal and aromatic plants in Yemen, deployment-components of effective-uses. Ebadi Center for studies and Publishing Sana’a- Yemen. 127.

Goudjil MB, Ladjel S, Bencheikh SE, Zighmi S, Hamada D. 2015.Chemical Composition, Antibacterial and Antioxidant Activities of the Essential Oil Extracted from the Mentha piperita of Southern Algeria. Research Journal of Photochemistry, 9(2), 79-87.

Gulcin I, Huyut Z, Elmastas M. 2010. Radical scavenging and antioxidant activity of tannic acids. Arabian Journal of  Chemistry, 3(1), 43-53.

Ghazanfar SA. 1994. Handbook of Arabian Medicinal Plants. CRC press, Inc., USA pp 64-65.

Knobloch E, Pauli A, Iberl B, Wies N, Weigand H. 1988. Mode of action of essential oil components on whole cells of bacteria and fungi in plate tests, P. Schreier (Ed.), Bioflavor ‘87, Walter de Gruyter Verlag, Berlin, New York (1988), pp. 287-299

Mann CM, Markham JL.1998A new method for determining the minimum inhibitory concentration of essential oils. Journal of Applied Microbiology 84, 538 544.

Nostro A, Marino A, Blanco AR, Cellini L, Giulio D, Pizzimenti M, Sudano F, Roccaro A, Bisignano G. 2009. In vitro activity of carvacrol against staphylococcal preformed biofilm by liquid and vapour contact. Journal of Medicinal Microbiology 58, 791-797.

Oyaizu M, 1986. Studies on products of browning reaction: Antioxydative activities of products of browning reaction prepared from glucosamine. Japanese Journal of Nutrition and Dietetics, 44, 307-315.

Piaru SP, Mahmud R, Abdul Majid AMS, Mahmoud Nassar ZD. 2012. Antioxydant and antiangiogenic activities of essential oil of Myristica fragrance and Morinda citrifolia. Asian Pacific Journal of Tropical Medicine, 5(4), 294-298.

Quezel P, Santa S. 1963. Nouvelle flore de l’Algérie et des régions, désertiques et méridionales, Tome II, éditions CNRS, Paris  675

Rafael B, Ana M, Rita J, Rita A, Aida D, Noélia D, Maria M, Generosa T. 2015. Antioxidant and Antimitotic Activities of Two Native Lavandula Species from Portugal. Journal of Evidence-Based Complementary and Alternative Medicine.

Sagdic O, Karahan AG, Ozcan M, Ozkan G.  2003. Effect of some spice extracts on bacterial inhibition. Food Science and Technology International 9, 353-356.

Singh R, Shushni MAM, Belkheir A. 2011. Antibacterial and antioxidant activities of Mentha peperita L. Arabian Journal of Chemistry 8(3), 322-328

Ultee A, Bennik M, Moezelaar R. 2002.The phenolic hydroxyl group of carvacrol is essential for action against the food borne pathogen Bacillus cereus. Applied and environmental microbiology 68, 1561-1568.

USFDA, U.S Food and Drug Administration. 2006. Food additive status list.

Wood JRI. 1997. A Handbook of the Yemen Flora, Whit stable Litho Printers Ltd, Royal Botanic Gardens, Kew. UK. 296.