Coat protein gene based phylogenetic analysis of barley yellow dwarf virus-PAV infecting cereal

Paper Details

Research Paper 01/03/2017
Views (602)
current_issue_feature_image
publication_file

Coat protein gene based phylogenetic analysis of barley yellow dwarf virus-PAV infecting cereal

Abdul Qadir, Anjum Munir, Shahid Hameed, Hussain Shah, Lucy R Stewart
Int. J. Biosci. 10(3), 283-287, March 2017.
Copyright Statement: Copyright 2017; The Author(s).
License: CC BY-NC 4.0

Abstract

Barley Yellow Dwarf disease exclusively afflicts plant species in the family Poaceae and is especially noticeable where ever crops such as barley, maize, oats and wheat are cultivated. The total RNA extracted through TRI reagent and Reverse transcription Polymerase chain reaction (RT-PCR) was carried out by using Revert AidTM H-minus. For confirmation, Coat Protein Gene (CpG) specific primers of BYDV-PAV were used. The result showed that BYDV-PAV exhibit a high frequency of nucleotide and amino acid homogeneity within CpG region. As compared with inter population the isolate JQ811488 (from oat) found a unique thread of 3 amino acid difference at 3` “ANP” while isolate JQ811487 (from wheat) showed 9aa differences mostly at 5`. Pakistani isolate JQ811489 (from maize) found maximum 99.2% similarity with US isolate DQ285673 which is highest as compare with inter population. This study will increase understanding of the genetic diversity of Pakistani isolates of BYDV and their relationship among and with other isolates.

Brault V, Herrbach É, Reinbold C. 2007. Electron microscopy studies on luteovirid transmission by aphids. Micron 38(3), 302-312.

Elena S, Agudelo-Romero P, Carrasco P. 2008. Experimental evolution of plant RNA viruses. Heredity 100(5), 478-483.

Gibbs A, Gibbs M, Ohshima K, Garcia-Arenal F. 2008. More about plant virus evolution; past, present and future. Origin and evolution of viruses 229-250.

Gray S, Gildow FE. 2003. Luteovirus-Aphid Interactions*. Annual review of phytopathology 41(1), 539-566.

Hall G. 2006. Selective constraint and genetic differentiation in geographically distant barley yellow dwarf virus populations. Journal of general virology 87(10), 3067-3075.

Li C, Cox-Foster D, Gray SM, Gildow F. 2001. Vector specificity of barley yellow dwarf virus (BYDV) transmission: identification of potential cellular receptors binding BYDV-MAV in the aphid, Sitobion avenae. Virology 286(1), 125-133.

Lister RM, Ranieri R. 1995. Distribution and economic importance of barley yellow dwarf. Barley yellow dwarf 40, 29-53.

Mastari J, Lapierre H, Dessens JT. 1998. Asymmetrical distribution of barley yellow dwarf virus PAV variants between host plant species. Phytopathology 88(8), 818-821.

Mayo M, d’Arcy C. 1999. Family Luteoviridae: a reclassification of luteoviruses. The Luteoviridae 15-22.

Miller WA, Liu S, Beckett R. 2002. Barley yellow dwarf virus: Luteoviridae or Tombusviridae? Molecular Plant Pathology 3(4), 177-183.

Pagán I, Holmes EC. 2010. Long-term evolution of the Luteoviridae: time scale and mode of virus speciation. Journal of Virology 84(12), 6177-6187.

Saleem K, Hameed S, Ul-Haque I. 2013. Phylogenetic analysis of coat protein gene of BYDV-MAV strain from wheat. Archives of Phytopathology and Plant Protection 46(14), 1747-1755.

Stern A, Sorek R. 2011. The phage‐host arms race: shaping the evolution of microbes. Bioessays 33(1), 43-51.

Svanella-Dumas L, Candresse T, Hullé M, Marais A. 2013. Distribution of Barley yellow dwarf virus-PAV in the sub-Antarctic Kerguelen Islands and characterization of two new Luteovirus species. Plos one 8(6), e67231.

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution 30(12), 2725-2729.

Related Articles

Proximate analysis of pelleted sorghum-based feeds as substitute for corn

I. I. Juan S. Daquioag, Michael M. Uy, Int. J. Biosci. 27(5), 232-236, November 2025.

Evolution of the weight of carcasses and offal of Cobb 500 broiler chickens according to the age of slaughter

Soro Soronikpoho, Kouadio Kouakou Parfait, Kouassi Koffi Dongo, Brou Gboko Konan Gatien, Int. J. Biosci. 27(5), 225-231, November 2025.

Agronomic performance of the newly pruned coffee trees at the CSU Lal-lo old coffee plantation

Maribel L. Fernandez, Florante Victor M. Balatico, Ronel A. Collado, Int. J. Biosci. 27(5), 217-224, November 2025.

A comprehensive review and meta-analysis on Alzheimer’s genetics: Exploring the genetic architecture and its application in future genomic medicine

Shafee Ur Rehman, Shabeer Khan, Muhammad Usman, Sakarie Khadar Ibrahim, Int. J. Biosci. 27(5), 204-216, November 2025.

Effect of aqueous leaf extract of Senna occidentalis (Fabaceae) on induced arrhythmia in Rabbits

Obrou Jean Luc Amiltone, Nagalo Ousmane, Mossoun Mossoun Arsène, Abo Kouakou Jean-Claude, Int. J. Biosci. 27(5), 198-203, November 2025.

Targeting proteolytic enzymes in the hemoglobin degradation pathway to inhibit Plasmodium falciparum: An in silico approach

Sethupathi Virumandi, Elumalai Balamurugan, Aakash Ganesan, Sowmiya Ganesan, Srinidhi Raveenthiran, Int. J. Biosci. 27(5), 182-197, November 2025.

Composition and variation of milk from Djallonké goats fed with different diets in Burkina Faso

Alice Gisèle Sidibé-Anago, Vinsoun Millogo, Assouan Gabriel Bonou, Remadji Rufine Djikoldingam, Mariétou Sissao, Michel Kéré, Guy Apollinaire Mensah, Int. J. Biosci. 27(5), 173-181, November 2025.

Antagonestic activity of Trichoderma viride against legume plant field soil associated pathogens

R. Nithyatharani, S. Subashini, Int. J. Biosci. 27(5), 169-172, November 2025.