Coat protein gene based phylogenetic analysis of barley yellow dwarf virus-PAV infecting cereal

Paper Details

Research Paper 02/03/2017
Views (575)
current_issue_feature_image
publication_file

Coat protein gene based phylogenetic analysis of barley yellow dwarf virus-PAV infecting cereal

Abdul Qadir, Anjum Munir, Shahid Hameed, Hussain Shah,
Int. J. Biosci. 10(3), 283-287, March 2017.
Copyright Statement: Copyright 2017; The Author(s).
License: CC BY-NC 4.0

Abstract

Barley Yellow Dwarf disease exclusively afflicts plant species in the family Poaceae and is especially noticeable where ever crops such as barley, maize, oats and wheat are cultivated. The total RNA extracted through TRI reagent and Reverse transcription Polymerase chain reaction (RT-PCR) was carried out by using Revert AidTM H-minus. For confirmation, Coat Protein Gene (CpG) specific primers of BYDV-PAV were used. The result showed that BYDV-PAV exhibit a high frequency of nucleotide and amino acid homogeneity within CpG region. As compared with inter population the isolate JQ811488 (from oat) found a unique thread of 3 amino acid difference at 3` “ANP” while isolate JQ811487 (from wheat) showed 9aa differences mostly at 5`. Pakistani isolate JQ811489 (from maize) found maximum 99.2% similarity with US isolate DQ285673 which is highest as compare with inter population. This study will increase understanding of the genetic diversity of Pakistani isolates of BYDV and their relationship among and with other isolates.

 

Brault V, Herrbach É, Reinbold C. 2007. Electron microscopy studies on luteovirid transmission by aphids. Micron 38(3), 302-312.

Elena S, Agudelo-Romero P, Carrasco P. 2008. Experimental evolution of plant RNA viruses. Heredity 100(5), 478-483.

Gibbs A, Gibbs M, Ohshima K, Garcia-Arenal F. 2008. More about plant virus evolution; past, present and future. Origin and evolution of viruses 229-250.

Gray S, Gildow FE. 2003. Luteovirus-Aphid Interactions*. Annual review of phytopathology 41(1), 539-566.

Hall G. 2006. Selective constraint and genetic differentiation in geographically distant barley yellow dwarf virus populations. Journal of general virology 87(10), 3067-3075.

Li C, Cox-Foster D, Gray SM, Gildow F. 2001. Vector specificity of barley yellow dwarf virus (BYDV) transmission: identification of potential cellular receptors binding BYDV-MAV in the aphid, Sitobion avenae. Virology 286(1), 125-133.

Lister RM, Ranieri R. 1995. Distribution and economic importance of barley yellow dwarf. Barley yellow dwarf 40, 29-53.

Mastari J, Lapierre H, Dessens JT. 1998. Asymmetrical distribution of barley yellow dwarf virus PAV variants between host plant species. Phytopathology 88(8), 818-821.

Mayo M, d’Arcy C. 1999. Family Luteoviridae: a reclassification of luteoviruses. The Luteoviridae 15-22.

Miller WA, Liu S, Beckett R. 2002. Barley yellow dwarf virus: Luteoviridae or Tombusviridae? Molecular Plant Pathology 3(4), 177-183.

Pagán I, Holmes EC. 2010. Long-term evolution of the Luteoviridae: time scale and mode of virus speciation. Journal of Virology 84(12), 6177-6187.

Saleem K, Hameed S, Ul-Haque I. 2013. Phylogenetic analysis of coat protein gene of BYDV-MAV strain from wheat. Archives of Phytopathology and Plant Protection 46(14), 1747-1755.

Stern A, Sorek R. 2011. The phage‐host arms race: shaping the evolution of microbes. Bioessays 33(1), 43-51.

Svanella-Dumas L, Candresse T, Hullé M, Marais A. 2013. Distribution of Barley yellow dwarf virus-PAV in the sub-Antarctic Kerguelen Islands and characterization of two new Luteovirus species. Plos one 8(6), e67231.

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics nalysis version 6.0. Molecular biology and evolution 30(12), 2725-2729.

Related Articles

Muscle type and meat quality of local chickens according to preslaughter transport conditions and sex in Benin

Assouan Gabriel Bonou*, Finagnon Josée Bernice Houéssionon, Kocou Aimé Edenakpo, Serge Gbênagnon Ahounou, Chakirath Folakè Arikè Salifou, Issaka Abdou Karim Youssao, Int. J. Biosci. 27(6), 241-250, December 2025.

Effects of micronutrients and timing of application on the agronomic and yield characteristics of cucumber (Cucumis sativus)

Princess Anne C. Lagcao, Marissa C. Hitalia*, Int. J. Biosci. 27(6), 214-240, December 2025.

Response of different soybean varieties to phosphorus fertilizer microdosing and rhizobium inoculation in the sub-humid zone of Northern Benin

Pierre G. Tovihoudji*, Kamarou-Dine Seydou, Lionel Zadji, Sissou Zakari, Valerien A. Zinsou, Int. J. Biosci. 27(6), 201-213, December 2025.

On-farm validation of black soldier fly larvae meal as a sustainable replacement for shrimp meal in rainbow trout diets in the mid hills of Nepal

Ishori Singh Mahato, Krishna Paudel*, Sunita Chand, Anshuka Bhattarai, Int. J. Biosci. 27(6), 189-200, December 2025.

Insect fauna associated with Cucumis sativus (Cucurbitales: Cucurbitaceae) in Parakou, A cotton-growing area of central Benin

Lionel Zadji*, Mohamed Yaya, Roland Bocco, Prudencia M. Tovignahoua, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, Hugues Baimey, Leonard Afouda, Int. J. Biosci. 27(6), 175-188, December 2025.

First record of two hymenopteran species, Brachymeria excarinata Gahan (Chalcididae) and Pteromalus sp. (Pteromalidae), as hyperparasitoids of Diadegma insulare in Senegal

Babacar Labou*, Etienne Tendeng, Mamadou Diatte, El hadji Sérigne Sylla, Karamoko Diarra, Int. J. Biosci. 27(6), 167-174, December 2025.

Hepatoprotective and antinociceptive effects of terpinolene in streptozotocin-induced diabetic peripheral neuropathic rats

Ravishankar Sarumathi, Muthukumaran Preethi, Chandrasekaran Sankaranarayanan*, Int. J. Biosci. 27(6), 156-166, December 2025.