Competitive ability of canola cultivars (Brassica napus L.) against their natural weed populations

Paper Details

Research Paper 01/03/2013
Views (690)
current_issue_feature_image
publication_file

Competitive ability of canola cultivars (Brassica napus L.) against their natural weed populations

Hashem Aminpanah, Saeed Firouzi, Abouzar Abbasian
Int. J. Biosci. 3(3), 121-128, March 2013.
Copyright Statement: Copyright 2013; The Author(s).
License: CC BY-NC 4.0

Abstract

To determine the competitive ability of canola cultivars against natural weed populations, a field experiment was conducted in northern Iran, Mazandaran province, during 2010–2011 growing season. The experiment was arranged as a factorial randomized complete block design with three replications. Factors were four canola cultivars (Hayola-420, Hayola-308, RGS-003 and PF) and two weed management regimes (weed-free condition and weedy condition). Averaged across weed management regimes, grain yield of RGS-003 was significantly higher than that of other canola cultivars. Weed interference significantly reduced canola grain yield and yield components, regardless of canola cultivar. The reduction in grain yield by weed competition was 15.5% for Hayola-308, 11.1% for RGS-003, 9.8% for PF and 6.6% for Hayola-420. This indicates that canola cultivar had different ability to withstand competition, which Hayola-420 had the highest (43.39) ability to withstand competition, followed by PF (40.28), RGS-003 (38.94) and Hayola-308 (34.54). The rank order of competitive ability of the canola cultivars was RGS-003 = Hayola-420 > PF = Hayola-308. Canola grain yield was positively (P < 0.01) correlated with silique number on main stem, grain number in silique of main stem, silique number on side branches, 1000 grain weight, and canola biomass, but negatively (P < 0.01) correlated with weed biomass, and not correlated with grain number in silique of side branches, plant height and harvest index. In conclusion, these results confirmed that there was a significant difference among canola cultivars for competitive ability against weeds.

Challaiah O, Burnside C, Wicks GA, Johnson VA. 1986. Competition between winter wheat (Triticum aestivum) cultivars and downy brome (Bromus tectorum). Weed Science 34, 689-693.

Coleman RK, Gill GS, Rebetzke GJ. 2001. Identification of quantitative trait loci for traits conferring weed competitiveness in wheat (Triticum aestivum L.). Australian Journal of Agricultural Research 52, 1235–1246, http://dx.doi.org/10.1071/AR01055

Chikoye D, Lum AF, Abaidoo R, Menkir A, Kamara A, Ekeleme F, Sanginga N. 2008. Response of Corn Genotypes to Weed Interference and Nitrogen in Nigeria. Weed Science 56, 424–433, http://dx.doi.org/10.1614/WS-07-055.1

Eslami SV, Gill GS, Bellotti B, McDonald G. 2006. Wild radish (Raphanus raphanistrum) interference in wheat. Weed Science 54, 749–756, http://dx.doi.org/10.1614/WS-05-180R2.1

Gibson KD, Hill JE, Foin TC, Caton BP, Fischer AJ. 2001. Water-seeded rice cultivars differ in ability to interfere with watergrass. Agronomy Journal 93, 326-332. DOI: 10.2134/agronj2001.932326x

Jannink JL, Orf     JH, Jordan NR, Shaw RG. 2000. Index selection for weed suppressive ability in soybean. Crop Science, 40, 1087-1094, http://dx.doi.org/10.2135/cropsci2000.4041087x

Jennings PR, Aquino RC. 1968. Studies on competition in rice. III. The mechanism of competition among phenotypes. Evolution 22, 529-542. DOI: 10.2307/2406878

Kawano K, Gonzalez H, Lucena M. 1974. Intra-specific competition, competition with weeds, and spacing response in rice. Crop Science 14, 841-845.

McDonald GK. 2003. Competitiveness against grass weeds in field pea genotypes. Weed Research 43, 48–58, http://dx.doi.org/10.1046/j.1365-3180.2003.00316.x

Paolini R, Faustini F, Saccardo F and Crino P. 2006. Competitive interactions between chick-pea genotypes and weeds. Weed Research 46, 335–344, http://dx.doi.org/10.1111/j.1365-3180.2006.00513.x

Paolini R, Del Puglia S, Principi M, Barcellona O, Riccardi E. 1998. Competition between safflower and weeds as influencedby crop genotype and sowing time. Weed Research 38, 247–255, http://dx.doi.org/10.1046/j.1365-3180.1998.00096.x

SAS, version 9.1.3. 2004. SAS Institute. Cary, NC, USA.

Wang G, McGiffen MEJr, Ehlers JD, Marchi ECS. 2006. Competitive ability of cowpea genotypes with different growth habit. Weed Science 54, 775–782, http://dx.doi.org/10.1614/WS-06-011R.1

Watson PR, Derksen DA, Van Acker RC. 2006. The ability of 29 barley cultivars to compete and withstand competition. Weed Science 54, 783–792, http://dx.doi.org/10.1614/WS-05-020R3.1

Watson PR, Derksen DA, Van Acker RC, Blrvine MC. 2002. The contribution of seed, seedling, and mature plant traits to barley cultivar competitiveness against weeds. Proceedings of the National Meeting- Canadian Weed Science Society, 49- 57.

Zhao DL, Atlin GN, Bastiaans L, Spiertz JHJ. 2006. Comparing rice germplasm for growth, grain yield, and weed-suppressive ability under aerobic soil conditions. Weed Research 46, 444-452, http://dx.doi.org/10.1111/j.1365-3180.2006.00529.x

Related Articles

Muscle type and meat quality of local chickens according to preslaughter transport conditions and sex in Benin

Assouan Gabriel Bonou*, Finagnon Josée Bernice Houéssionon, Kocou Aimé Edenakpo, Serge Gbênagnon Ahounou, Chakirath Folakè Arikè Salifou, Issaka Abdou Karim Youssao, Int. J. Biosci. 27(6), 241-250, December 2025.

Effects of micronutrients and timing of application on the agronomic and yield characteristics of cucumber (Cucumis sativus)

Princess Anne C. Lagcao, Marissa C. Hitalia*, Int. J. Biosci. 27(6), 214-240, December 2025.

Response of different soybean varieties to phosphorus fertilizer microdosing and rhizobium inoculation in the sub-humid zone of Northern Benin

Pierre G. Tovihoudji*, Kamarou-Dine Seydou, Lionel Zadji, Sissou Zakari, Valerien A. Zinsou, Int. J. Biosci. 27(6), 201-213, December 2025.

On-farm validation of black soldier fly larvae meal as a sustainable replacement for shrimp meal in rainbow trout diets in the mid hills of Nepal

Ishori Singh Mahato, Krishna Paudel*, Sunita Chand, Anshuka Bhattarai, Int. J. Biosci. 27(6), 189-200, December 2025.

Insect fauna associated with Cucumis sativus (Cucurbitales: Cucurbitaceae) in Parakou, A cotton-growing area of central Benin

Lionel Zadji*, Mohamed Yaya, Roland Bocco, Prudencia M. Tovignahoua, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, Hugues Baimey, Leonard Afouda, Int. J. Biosci. 27(6), 175-188, December 2025.

First record of two hymenopteran species, Brachymeria excarinata Gahan (Chalcididae) and Pteromalus sp. (Pteromalidae), as hyperparasitoids of Diadegma insulare in Senegal

Babacar Labou*, Etienne Tendeng, Mamadou Diatte, El hadji Sérigne Sylla, Karamoko Diarra, Int. J. Biosci. 27(6), 167-174, December 2025.

Hepatoprotective and antinociceptive effects of terpinolene in streptozotocin-induced diabetic peripheral neuropathic rats

Ravishankar Sarumathi, Muthukumaran Preethi, Chandrasekaran Sankaranarayanan*, Int. J. Biosci. 27(6), 156-166, December 2025.