Computational modeling of the transfer of electrical signal between neurons, connected through mixed synapses

Paper Details

Research Paper 01/12/2021
Views (365) Download (22)
current_issue_feature_image
publication_file

Computational modeling of the transfer of electrical signal between neurons, connected through mixed synapses

Greta Briliūtė, Mindaugas Šnipas
Int. J. Biosci.19( 6), 163-172, December 2021.
Certificate: IJB 2021 [Generate Certificate]

Abstract

Synaptic communication between neurons mainly occurs in two different modes of communication – either chemical or electrical. However, the combined evidence from microscopy, immunohistochemistry and electrophysiology experiments confirmed the existence of morphologically mixed synapses, which contains both chemical and electrical synapses. To our knowledge, the putative role of signal transfer through the mixed synapses was not yet addressed in computational neuroscience studies. In this paper, we present data obtained from mathematical and computational modeling experiments. We simulated the transfer of electrical signal between neurons, coupled through a mixed synapse containing an electrical and either an inhibitory (GABA) or excitatory (AMPA or NMDA) chemical synapse. The obtained simulation data revealed that inhibitory effect of GABA synapse is largely obscured by the biphasic response incoming to the postsynaptic neuron from the electrical synapse. In addition, the data showed that some combinations of electrical and an excitatory NMDA (but not APMA) synapses can provide an optimal mixture of conductances to ensure the required firing rates in the postsynaptic neuron. These results may offer at least a partial mechanistic explanation for a relative abundance of mixed synapses containing NMDA synapse, and the rarity of evidence for the existence of other types of mixed synapses.

VIEWS 34

Allen MJ, Godenschwege TA, Tanouye MA, Phelan P. 2006. Making an escape: development and function of the Drosophila giant fibre system. Seminars in Cell and Developmental Biology 17(1), 31-41. DOI: 10.1016/j.semcdb.2005.11.011

Bardoni R, Magherini PC, MacDermott AB. 1998. NMDA EPSCs at glutamatergic synapses in the spinal cord dorsal horn of the postnatal rat. Journal of Neuroscience 18(16), 6558-6567. DOI: 10.1523/JNEUROSCI.18-16-06558.1998

Bennett MV, Pappas GD, Aljure E, Nakajima Y. 1967. Physiology and ultrastructure of electrotonic junctions. II. Spinal and medullary electromotor nuclei in mormyrid fish. Journal of Neurophysiology 30(2), 180-208. DOI: 10.1152/jn.1967.30.2.180

Destexhe A, Mainen ZF, Sejnowski TJ. 1994a. An Efficient Method for Computing Synaptic Conductances Based on a Kinetic Model of Receptor Binding. Neural Computation 6(1), 14-18. DOI: 10.1162/neco.1994.6.1.14

Destexhe A, Mainen ZF, Sejnowski TJ. 1994b. Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. Journal of Computational Neuroscience 1(3), 195-230.

Gerstner W, Kreiter AK, Markram H, Herz AV. 1997. Neural codes: firing rates and beyond. Proceedings of the National Academy of Sciences of the United States of America 94(24), 12740-12741. DOI: 10.1073/pnas.94.24.12740

Hamzei-Sichani F, Davidson KG, Yasumura T, Janssen WG, Wearne SL, Hof PR, Traub RB, Gutierrez R, Ottersen OP, Rash JE. 2012. Mixed Electrical-Chemical Synapses in Adult Rat Hippocampus are Primarily Glutamatergic and Coupled by Connexin-36. Frontiers in Neuroanatomy 6, 13. DOI: 10.3389/fnana.2012.00013

Herberholz J, Antonsen BL, Edwards DH. 2002. A lateral excitatory network in the escape circuit of crayfish. Journal of Neuroscience 22(20), 9078-9085.

Hodgkin AL, Huxley AF. 1952. A quantitative description of membrane current and its application to conduction of excitation in nerve. The Journal of Physiology 117, 500-544.

Kaeser PS, Regehr WG. 2014. Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release. Annual Review of Physiology 76, 333-363. doi: 10.1146/ annurev -physiol-021113-170338

Kamasawa N, Furman CS, Davidson KG, Sampson JA, Magnie AR, Gebhardt BR, Kamasawa M, Yasumura T, Zumbrunnen JR, Pickard GE, Nagy JI, Rash JE. 2006. Abundance and ultrastructural diversity of neuronal gap junctions in the OFF and ON sublaminae of the inner plexiform layer of rat and mouse retina. Neuroscience 142(4), 1093-1117. DOI: 10.1016/j.neuroscience. 2006. 08.020

Korn H, Sotelo C, Crepel F. 1973. Electrotonic coupling between neurons in the rat lateral vestibular nucleus. Experimental Brain Research 16(3), 255-275. doi: 10.1007/BF00233330

Li C, Gulledge AT. 2021. NMDA Receptors Enhance the Fidelity of Synaptic Integration. eNeuro 8(2). DOI: 10.1523/ENEURO.0396-20.2020

Lin JW, Faber DS. 1988. Synaptic transmission mediated by single club endings on the goldfish Mauthner cell. I. Characteristics of electrotonic and chemical postsynaptic potentials. Journal of Neuroscience 8, 1302-1312. DOI: 10.1523/ JNEUROSCI. 08-04-01302.1988

Maciunas K, Snipas M, Paulauskas N, Bukauskas FF. 2016. Reverberation of excitation in neuronal networks interconnected through voltage-gated gap junction channels. Journal of General Physiology 147(3), 273-288. doi: 10.1085/jgp.

Martin AR, Pilar G. 1963. Transmission through the ciliary ganglion of the chick. Journal of Physiology 168(2), 464-475. DOI: 10.1113/jphysiol. 1963.

Nagy JI, Pereda AE, Rash JE. 2018. Electrical synapses in mammalian CNS: Past eras, present focus and future directions. Biochimica et Biophysica Acta – Biomembranes 1860(1), 102-123. DOI: 10.1016/j.

Ovsepian SV, Vesselkin NP. 2014. Wiring prior to firing: the evolutionary rise of electrical and chemical modes of synaptic transmission. Reviews in the Neurosciences 25(6), 821-832. DOI: 10.1515/revneuro

Pereda A, O’Brien J, Nagy JI, Bukauskas F, Davidson KG, Kamasawa N, Yasumura T, Rash JE. 2003. Connexin35 mediates electrical transmission at mixed synapses on Mauthner cells. Journal of Neuroscience 23, 7489-7503.

Pereda AE, Bell TD, Faber DS. 1995. Retrograde synaptic communication via gap junctions coupling auditory afferents to the Mauthner cell. Journal of Neuroscience 15, 5943-5955.

Raichle ME, Gusnard DA. 2002. Appraising the brain’s energy budget. Proceedings of the National Academy of Sciences of the United States of America 99(16), 10237-10239. DOI: 10.1073/pnas.172399499

Rash JE, Davidson, KG, Kamasawa N, Yasumura T, Kamasawa M, Zhang C, Michaels R, Restrepo D, Ottersen OP, Olson CO, Nagy JI. 2005. Ultrastructural localization of connexins (Cx36, Cx43, Cx45), glutamate receptors and aquaporin-4 in rodent olfactory mucosa, olfactory nerve and olfactory bulb. Journal of Neurocytology 34(3-5), 307-341. DOI: 10.1007/s11068-005-8360-2

Robertson JD. 1963. The occurence of a subunit pattern in the unit membranes of club endings in Mauthner cell synapses in goldfish brains. Journal of Cell Biology 19(1), 201-221. DOI: 10.1083/jcb.19.1.201

Rubio ME, Nagy JI. 2015. Connexin36 expression in major centers of the auditory system in the CNS of mouse and rat: Evidence for neurons forming purely electrical synapses and morphologically mixed synapses. Neuroscience 303, 604-629. DOI: 10.1016/ j.neuroscience.2015.07.026

Snipas M, Rimkute L, Kraujalis T, Maciunas K, Bukauskas FF. 2017. Functional asymmetry and plasticity of electrical synapses interconnecting neurons through a 36-state model of gap junction channel gating. PLOS Computational Biology 13(4), e1005464. DOI: 10.1371/journal.pcbi.1005464

Srinivas M, Rozental R, Kojima T, Dermietzel R, Mehler M, Condorelli DF, Kessler JA, Spray DC. 1999. Functional properties of channels formed by the neuronal gap junction protein connexin36. Journal of Neuroscience 19, 9848-9855. DOI: 10.1523/JNEUROSCI.19-22-09848.1999

Tuttle R, Masuko S, Nakajima Y. 1986. Freeze-fracture study of the large myelinated club ending synapse on the goldfish Mauthner cell: special reference to the quantitative analysis of gap junctions. Journal of Comparative Neurology 246, 202-211. DOI: 10.1002/cne.902460206