Welcome to International Network for Natural Sciences | INNSpub

Paper Details

Research Paper | February 11, 2023

| Download 26

Continental methane gas production and its implication to the global animal/livestock production

Rodrin R. Rivera, Vincent T. Lapinig, Mar John B. Dauyo

Key Words:

J. Bio. Env. Sci.22(2), 58-62, February 2023


JBES 2023 [Generate Certificate]


This study utilized a descriptive type of research. Annual methane gas emissions were identified in each country worldwide. The amount of methane gas emission every year was utilized using secondary data available from the internet. In this study, the trend of methane gas emission is analyzed by getting its average concentration in a forty-two (42) year production from 1970-2012. The highest volume of methane gas is observed in Asia while the least volume is registered by the Australian continent. Symbolic regression was used for curve-fitting rather than the traditional model –based regression analysis. The results indicated that Asian continent has the highest methane gas outputs with volatility of trends over time. Most of the countries in Asia are developing or underdeveloped which have bigger space for rapid industrialization in the name of development. This could be attributed to its booming industries and high agriculture animal production. The production period of agricultural animals directly affects the concentration of methane gas because of the amount of their waste products that are soon to be decomposed by microorganisms. However, Australia has the most stagnant concentration of methane gas among all the sampled continents due to the fact that this continent was already highly revolutionized by computer modernization, and the production of agricultural animals was maintained for numerous years.


Copyright © 2023
By Authors and International Network for
Natural Sciences (INNSPUB)
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Continental methane gas production and its implication to the global animal/livestock production

DeConto R, Polland D. 2016. Contribution of Antarctica to Past and Future Sea-level Rise. Retrieved from https://www.nature.com/articles /nature.

Berndt A, Lemes A, Sakamoto L. 2013. The Impact of Brazillian livestock Production on Global Warming. Accessed on https://scholar.google. com.ph/

Frost P. 2001. The Potential Negative Impacts of Global Climate Change on the Tropical Montane Cloud Forest. Earth-Science Reviews volume 55

Intergovernmental Panel on Climate Change (IPCC). 2014. Climate Change 2013, The Physical Science Basis, Retrieved from http://ipcc.ch/

Jevrejeva S, Moore JC, Grinsted A. 2012. “Sea Level Projections to AD250 with a New Generation of Climate Change Scenarios”. Journal of Global and Planetary Change volume 80.

Jiang X, Mira D, Cluff DL. 2016. The Combustion Mitigation of Methane as a Non-Carbon Dioxide Greenhouse Gas.

National Oceanic and Atmospheric Administration (NOAA). 2010. Ocean Acidification, Today and in the Future. www.climatechangewatch.noaa.gov/image2010/oceanacidificationtoday- and-in-the future.

Pound Ja, Fogden MPL, Campbell JH. 1994. Biological Respond to Climate Change on a Tropical Mountain Nature

Weitzman Martin. 2009. On Modelling and Interpreting the Economics of Catastrophic Climate Change. Reviewed from Economic and Statistic. (1).


Style Switcher

Select Layout
Chose Color
Chose Pattren
Chose Background