Contributions of environmental isotopes to identification of lateral transfers and drainage in a coastal aquifer system, Annaba-Bouteldja (North-East Algeria)

Paper Details

Research Paper 01/12/2017
Views (323) Download (15)
current_issue_feature_image
publication_file

Contributions of environmental isotopes to identification of lateral transfers and drainage in a coastal aquifer system, Annaba-Bouteldja (North-East Algeria)

Imen Aichouri, Samir Hani, Nabil Bougherira, lamine Sayad, Nassima Sedrati, Larbi Djabri, Hicham Chaffai
J. Bio. Env. Sci.11( 6), 132-140, December 2017.
Certificate: JBES 2017 [Generate Certificate]

Abstract

A new approach was applied to the Annaba–Bouteldja aquifers (northeastern Algeria) in order to understand better the hydrogeology of the complex aquifers despite the scarcity of the available data. Statistical techniques are used to combine various disciplinary data in order to identify chemical and isotopic groups, which are in turn used to define groundwater flow paths. The results of this research agree with the generally accepted hydrogeological conceptual scheme of the aquifers. Additionally, we obtained new results using the PCA method: (1) identification of the complex flow system by grouping various qualitative and quantitative parameters; (2) the description and characterization of the main groundwater flow paths from their sources to the discharge areas. These flow paths are characterized by their water categories, which are represented by salinity and origin of groundwater. This approach is useful for analysing aquifers despite the lack of important database and may also be helpful for studying other complex groundwater basins.

VIEWS 25

Amarasinghe U., Giordano M, Liao Y, Shu Z. 2005. Water Supply, Water Demand and Agricultural Water Scarcity in China: A Basin Approach. Country Policy Support Programme (CPSP). Sustainable Economic Development Department, National Policy Environment Division, Government of the Netherlands.

Aoun-Sebaiti B, Hani A, Djabri L, Chaffai H, Aichouri I, Bougherira N. 2013. Simulation of water supply and water demand in the valley of Seybouse (East Algeria). Desalination and Water Treatment. DOI: 10.1080/19443994, 855662, 1-6.

Burger A. 1972. Chimie de la dissolution des roches carbonatées, Université de Neuchâtel, Switzerland.

Burgess WG, Hoque MA,  Michael HA,  Voss CI,  Breit GN, Ahmed KM. 2010. Vulnerability of deep groundwater in the Bengal Aquifer System to contamination by arsenic. Nature Geoscience 3, 83-87.

Chaffai H, Djabri L, Lamrous S. 2005. Réserves hydriques de la Wilaya de Annaba. Inventaire, évaluation et besoins futurs en ressources en eaux, LARHYSS Journal, ISSN 1112-3680, N° 4, 31-36.

Dalina C, Konara M, Hanasaki N, Rinaldo A, Rodriguez-Iturbe I. 2012. Evolution of the Global Virtual Water Trade Network, Proceedings of the National Academy of Sciences, USA 109(16), 5989-5994.

Davis JC. 1984. Statistics and Data Analysis in Geology, 2nd ed. Wiley: New York.

Deverel SJ. 1989. Geological and principal components analysis of groundwater chemistry and soil-salinity data, San Joaquin Valley, California. In Regional Characterization of Water Quality, Ragone S (Ed.). IAHS Publication, No 182, Wallingford 11-18.

Djabri L, Ghrieb L, Guezgouz N, Hani A, Bouhsina S. 2014. Impacts of morphological factors on the marine intrusion in Annaba region (East of Algeria), Desalination and Water Treatment, Volume 52, Issue 10-12, 2151-2156.

Djabri L, Mania J, Messadi D, Hani A, Souag M. 1996. Apport des isotopes dans la connaissance des origines des eaux de la vallée de la Seybouse, Revue Hydrogeologia-Espagne 12, 3-14.

Djabri L, Rouabhi A, Hani A, Lamouroux C, Pulido-Bosch A. 2008. Origin of water salinity in a lake and coastal aquifer system, Environmental Geology, Volume 54, Issue 3, 565-573.

Falkenmark M, Lannerstad M. 2005. Consumptive Water Use to Feed Humanity: Curing a Blind Spot, Hydrology and Earth System Sciences 9, 15-28.

Fan H, Huang H, Zeng T. 2006. Impacts of Anthropogenic Activity on the Recent Evolution of the Huang (Yellow) River Delta. Journal of Coastal Research 22(4), 919-929.

Fontes JC. 1976. Les isotopes du milieu dans les eaux souterraines, La Houille Blanche 3, 205-221.

Gilbert J. 1991. Vers une vision intégrée des eaux souterraines, résumé et recommendations, Journal d’Hydrogéologie 3, 257-263.

Hani A, Lallahem S, Mania J, Djabri L. 2006. On the use of finite-difference and Neural network models to evaluate the impact of underground water overexploitation. Hydrol. Process 20, 4381-4390.

Hani A. 2003. Analyse méthodologique de la structure et des processus anthropiques: Application aux ressources en eau d’un bassin côtier méditerranéen. PhD thesis, Université d’Annaba.

Idrotecno. 1979. Etude hydrogéologique de la région de Tindouf. Rapport final IDROGE/AO-623.

Laffite P, 1972. Traité d’Informatique Géologique. Edition Masson et Cie: Paris.

Lamouroux C, Hani A. 2006. Identification of groundwater flow paths in complex systems aquifer. Hydrol. Process 20, 2971-2987.

Melloul A, Collin M. 1991. Water quality factor identification by the principal components statistical method. Water Sciences and Technology 24(11), 41-50.

Melloul A. 1992. The principal components statistical method as a complementary approach to geochemical methods in water quality factor identification. Journal of Hydrology 140, 49-73.

Melloul A. 1995. Use of principal components analysis for studying deep aquifers with scarce data-application to the Nubian sandstone aquifer, Egypt and Israel. Hydrogeology Journal 3(2), 19-39.

Moulla AS, Guendouz A. 2004. Etude des ressources en eau souterraine en zones arides (Sahara algérien) par les méthodes isotopiques. Colloque international Terre et eau Annaba-Algérie 35-42.