Controlled environment system and method for rapid propagation of saba banana (Musa balbisiana) plantlets

Paper Details

Research Paper 01/01/2020
Views (765)
current_issue_feature_image
publication_file

Controlled environment system and method for rapid propagation of saba banana (Musa balbisiana) plantlets

Jimson S. Ramirez
J. Biodiv. & Environ. Sci. 16(1), 37-41, January 2020.
Copyright Statement: Copyright 2020; The Author(s).
License: CC BY-NC 4.0

Abstract

Conventional propagation practices of banana challenge the production of disease-free planting materials. This study evaluates the use of misting system and different plant growth enhancers, Benzyl Amino Purine at 2mg/l and Napthalene Acetic Acid at 0.93g/L, on plantlet development of Saba banana (Musa balbisiana) macropropagated under glasshouse conditions. A total of 36 corms are equally distributed in three propagators. Four growth parameters are observed and analysed using factorial in Completely Randomized Design in first generation plantlets (GP1) and second generation plantlets (GP2). Results show that the use of misting system significantly increased (p<0.01) all the growth parameters tested during the first and second cycles. The growth enhancers significantly shortened the number of days to emergence (p<0.01), (GP1, GP2) and increased the number of shoots emerged (p<0.01) (GP1, GP2), shoot collar diameter (p<0.01) (GP1) (p<0.05) (GP2), and total leaf area (p<0.05) (GP1) (p<0.01) (GP2). The interaction of the two factors has significantly shortened the number of days to emergence (P ≤ 0.05), produced the most number of shoots (P ≤ 0.01) and the largest total leaf area (P ≤ 0.05) in GP2. The findings suggest that the combined use of misting system and plant growth enhancers accelerates the growth of macropropagated Saba banana.

Calvo AD. 2007. In Vivo Technique: The Easier and Cheaper Way of Producing Lakatan. University of Southern Mindanao, Kabacan, Cotabato.

Choudhary ML, Kadam US. 2006. Micro- irrigation for cash crops. Westville publishing house. New Delhi. India.

Ebofin AO, Agboola DA, Ayodele MS, Aduradola AM. 2004. Effect of Some Growth Hormones on Seed Germination and Seedling Growth of Some Savannah Tree Legumes. Nigerian Journal of Botany 16, 64-75.

Faturoti B, Tenkouano A, Lemchi J, Nnaji N. 2002. Rapid multiplication of plantain and banana.

Joab V. 2004. Characterization of plantain and banana grown in the southern highlands of Tanzania. A special project submitted in partial fulfilment of the requirement for the degree of Bachelor of Science in Horticulture of Sokoine University of Agriculture. Morogoro, Tanzania pp. 17-19.

Kindimba and Msogoya J, Appl. Biosci. 2014. Effect of benzylaminopurine on in vivo multiplication. of French plantain ‘itoke sege 6086.

Macias DM. 2001. In situ Mass Propagation of the FHIA-20 Banana Hybrid using Benzylaminopurine. Infomusa. The International Magazine on Banana and Platain Vol. 10

Osei JK. 2005. Rapid field multiplication of plantains using benzyl adenine or coconut water-treated split corms. In: Anonymous (ed.), Rapport Technique. Document Interne. CRBP. Ghana Journal of Agricultural Sciences 39, 189-202.

Swennen R, De Langhe E. 1985. Growth parameters of yield of plantain (Musa cv. AAB). Annals of Botany 56, 197-20.

Singh HP, Selvarajan SR, Karihaloo JL. 2011. Micropropagation for Production of Quality Banana Planting Material in Asia-Pacific. Asia-Pacific Consortium on Agricultural Biotechnology (APCoAB), New Delhi, India P. 92.

Talengera D, Mangambo MJ, Rubaihayo PR. 1994. Testing for a Suitable Culture Medium for Micropropagation of East African Highland Bananas. African Crop Science Journal 2, 17-21.

Türkay C. 2007. Production of Banana in Turkey. West Mediterranean Agricultural Research Institute, Antalya-Turkey.

Related Articles

Assessing public awareness and knowledge of drinking water safety in Carmen, Cagayan De Oro City, Philippines

Ronnie L. Besagas, Romeo M. Del Rosario, Angelo Mark P. Walag, J. Biodiv. & Environ. Sci. 27(4), 80-85, October 2025.

Baseline floristics and above-ground biomass in permanent sample plots across miombo woodlands in different land tenure systems in Hwedza, Zimbabwe

Edwin Nyamugadza, Sara Feresu, Billy Mukamuri, Casey Ryan, Clemence Zimudzi, J. Biodiv. & Environ. Sci. 27(4), 65-79, October 2025.

Adapting to shocks and stressors: Aqua-marine processors approach

Kathlyn A. Mata, J. Biodiv. & Environ. Sci. 27(4), 57-64, October 2025.

Design and development of a sustainable chocolate de-bubbling machine to reduce food waste and support biodiversity-friendly cacao processing

John Adrian B. Bangoy, Michelle P. Soriano, J. Biodiv. & Environ. Sci. 27(4), 41-47, October 2025.

Ecological restoration outcomes in Rwanda’s Rugezi wetland: Biodiversity indices and food web recovery

Concorde Kubwimana, Jean Claude Shimirwa, Pancras Ndokoye, J. Biodiv. & Environ. Sci. 27(4), 32-40, October 2025.

Noise pollution in the urban environment and its impact on human health: A review

Israa Radhi Khudhair, Bushra Hameed Rasheed, Rana Ihssan Hamad, J. Biodiv. & Environ. Sci. 27(4), 28-31, October 2025.

Prevalence of Anaplasma marginale and Ehrlichia ruminantium in wild grasscutter’ specific ticks in southern Côte d’Ivoire

Zahouli Faustin Zouh Bi, Alassane Toure, Yatanan Casimir Ble, Yahaya Karamoko, J. Biodiv. & Environ. Sci. 27(4), 21-27, October 2025.