Convectif drying and thermodynamic properties of three starch products (Dioscorea cayenensis, Colocasia esculenta and Ipomoea batatas Lam) usually consumed in Congo

Paper Details

Research Paper 01/01/2019
Views (326) Download (16)
current_issue_feature_image
publication_file

Convectif drying and thermodynamic properties of three starch products (Dioscorea cayenensis, Colocasia esculenta and Ipomoea batatas Lam) usually consumed in Congo

BG Elongo, A Kimbonguila, L Matos, CH Hounounou Moutombo, M Mizere, SLH Djimi, JM Nzikou
J. Bio. Env. Sci.14( 1), 175-184, January 2019.
Certificate: JBES 2019 [Generate Certificate]

Abstract

The objective of this work is to contribute to the study of starch products in particular Dioscorea cayenensis, Colocasia esculenta and Ipomoea batatas by the characterization of their kinetics of convectif drying to the drying oven and the determination their properties thermodynamic. The convectif drying of the samples of these three starch products of parallel epipedic form of thickness 4 and 14 mm was carried out at temperatures of 50, 60 and 70°C. The results obtained show that the kinetics of drying of Dioscorea cayenensis, Colocasia esculenta and Ipomoea batatas present two (02) phases. It is of the phase of temperature setting and the phase at decreasing speed. The temperature and the thickness of the product have significant effects on the duration of drying, effective diffusivity (Deff), the energy of activation (Ea), the differential of enthalpy (ΔH*) and the energy of Gibbs (ΔG*) except for values of entropy (ΔS*). A titrates illustrative, the reduction the thickness of the product from 14 to 4mm makes it possible to reduce the energy of action from 19.43 to 10.68kJ.mol-1, 35.33 to 11.52kJ.mol-1 and from 11.08 to 5.77kJ.mol-1 respectively during the drying of Dioscorea cayenensis, of Colocasia esculenta.

VIEWS 17

Aghfir A, Akkad S, Rhazi1 M, Kane CSE, Kouhila M. 2008. Determination of the diffusion coefficient and the activation energy of the mint during continu ous conductive drying, Renewable a Energy Review.

Ahmed M, Akter MS, Lee JC, Eun JB. 2010a. Effect of pretreatments and drying temperatures on sweet potato flour. International Journal of Food Science and Technology 45, 726-732.

Akmel DC, Assidjo EN, Kouamé P, Yao KB. 2009. Mathematical modelling of Sun Drying Kinetics of Thin Layer Cocoa (Theobroma cacao) Beans. Journal of Applied Sciences Research 5(9), 1110-1116.

AOAC (Association of Official Analytical Chemists). 1990. Official methods of analysis (13th ed.) Washington, D.C: Association of Official Analytical Chemists.

Arslan and Musa Ozcan. 2007. Evaluation of drying methods with respect to drying kinetics, mineral content and color characteristics of rosemary leaves. Energy conversion and management 2-6.

Bonnazi C, Bimbinet JJ. 2003. Drying of foodstuffs principles, Edition: © Engineering techniques, Agri-food processing, F 3000.

Boughali S, Bouchekima B, Nadir N, Mennouche D, Bouguettaia H, Bechki D. 2008. Expérience du séchage solaire dans le Sahara septentrional algérien. Revue des Energies Renouvelables SMSTS’08 Alger 105-110.

Cladera-Olivera F, Marczak LDF, Emilie CPZ, et Pettermann AC. 2011. Adsorption d’eau, modélisation de pinhao (graine de Araucaria angustifolia) farine et analyse thermodynamique du processus d’adsorption. Journal of Food Process Engineering 34(3), 826-843.

Crank J. 1975. The mathematics of diffusion (2nd ed.) Great Britain, Clarendon Press.

Dangui CB. 2015. Production et caractérisation de farine de patate douce (Ipomoea batatas. Lam): optimisation de la technologie de panification. Thèse de Doctorat en Procédés et Biotechnologie Alimentaires de l’INP, Lorraine et de l’Université Marien Ngouabi, Brazzaville, 152 pages.

Doymaz I, Mehmet P. 2002. The effects of dipping pretreatments on air-drying rates of the seed less grapes, Journal of Food Engineering, Volume 52, 413-417.

Doymaz I. 2006. Thin-Layer Drying Behaviour of Mint Leaves (Mentha spicata L.)’, Journal of Food Engineering 74, 370-375.

Doymaz İ. 2004. Convective air drying characteristics of thin layer carrots. Journal of Food Engineering 61(3), 359-364.

Goneli ALD, Correa CP, Oliveira GHH, Botelho FM. 2010b. La desorption de l’eau et des propriétés thermodynamiques des graines de gombo. Transaction de l’ASAE 53(1), 191-197.

Goneli ALD, Correa CP, Oliveira GHH, Gomes FC, Botelho FM. 2010a. Les isothermes de sorption de l’eau et des propriétés thermodynamiques des grains de millet perlé. International Journal of Food Science and Technology 45(4), 282-383.

Gowen AA, Abu- Ghannam N, Frias J, Oliveira. 2008. Modeling dehydratation and rehydratation of cooked soybeans subjected to combinet microwave-hot-air drying. Innovative Food Science & Emerging Technologies 9, 129-137.

Guimaraes RM, Oliveira DEC, Osvaldo Resende, Silva JS, Rezende AM, et Egea MB. 2018. Thermodynamic properties and drying kinetics of ‘’okara’’. Revista Brasileira de Engenharia Agricola e Ambiental 22(6), 418-423.

Haoua A. 2007. Modélisation du séchage solaire sous serre des boues de stations d’épuration urbaines. Thèse de doctorat, Université Louis Pasteur Strasbourg I, Strasbourg, France. p 205.

JideanI VA, Mpotokwana SM. 2009. Modeling of water absorption of Botswana bambara varieties using Peleg’s equation. Journal of Food Engineering 92(2), 182-188. http://dx.doi. org/10.1016/j.jfoode.

Kaymak-Ertekin. 2002. Drying and Rehydrating Kinetics of Green and Red Peppers’, Journal of Food Science 67, 168-175.

Koua-Koffi PME, Gbaha BK P, et Touré S. 2014. Analyse thermodynamique des isothermes de sorption de manioc (Manihot esculenta). Journal of Food Science Technology 51(9), 1711-1723.

Kouassi CAJ. 2009. Etude comparative des caractéristiques galéniques et biopharmaceutiques des comprimés de paracétamol à base d’amidon d’igname krenglè et kponan, de taro rouge et blanc et des comprimés de «paracétamol spécialité et son générique. Thèse de Doctorat d’Etat en pharmacie de l’Université de Bamako, 169 pages.

Menasra A, et Fahloul D. 2015. Contribution au séchage convectif des glandes de chêne vert d’Aurès. Inn 5ème Séminaire Maghrébin sur les Sciences et les Technologies du Séchage, Ouargla (Algérie) 33-39p.

Messaoudi A, Fahloul D. 2015. Estimation of the mass and kineticdiffusivity of hot air drying of dates (dry variety), Inn 5th Maghreb in seminar on drying sciences and technologies, Ouargla Algeria) p. 45-62.

Mujumdar AS. 2006. Handbook of industrial drying. CRC Press, Florida, United States; 1308 p.

NEPA (Núcleo de Estudos e Pesquisasem Alimentos). 2006. Tabela Brasileira de Composição de Alimentos (2nd Edn), Fórmula Editora, Campinas 113 p.

Nguyen MH, Price WE. 2007. Air drying of banana. Influence of experimental parameters, slab thickness, banana maturity and harvesting season. Journal of Food Engineering 79, 200-207.

Njintang YN. 2003. Studies on the production of taro (Colocasia esculenta) flour for use in the preparation of achua taro base food. Doctorat/Ph.D thesis, University of Ngaoundere, Cameroon p 298.

Oliveira DEC, Resende O, Campos RC, Sousa KA. 2014a. Propriedades termodinamicas de sementes de tucuma-de-Goias (Astrocaryum huaimi Mart.) [Propriétés thermodynamiques des graines tucuma-de-goias (Astrocaryum huaimi Mart.)]. Revista Caatinga 27(3), 53-62.

Oliveira DEC, Resende O, Chaves TH, Sousa KA, Smaniotto TAS. 2014b. Propriedades termodinamicas das sementes de pinhao-manso [propriétés thermodynamiques des graines de jatropha]. Journal de Bioscience 30(3), 147-157.

Oliveira DEC, Resende O, Smaniotto TAS, Sousa KA, Campos RC. 2013. Propriedades termodinamicas de graos de milho para diferentes teores de agua de equilibrio [propriétés thermodynamiques des grains de maïs pour les teneurs en humidité équilibre différent]. Pesquisa Agropecuaria Tropical 43(1), 50-56.

Oliveira GHH, Correa CP, Santos SE, Treto CP, et Diniz MDMS. 2011. Evaluation des propriétés thermodynamiques utilisant GAB modèle pour décrire le processus de désorption de fèves de cacao. International Journal of Food Science & Technology 46(10), 2077-2084.

Ouedraogo J, Raji OA, Owamah HI. 2013. Isostère chaleurs de sorption de vapeur d’eau dans deux variétés de castor. Génie chimique et technologie transformatrice 4(2), 1-6.

Panchariya PC, Popovic D, Sharma AL. 2002. Thin-Layer Modelling of Black Tea Drying Process, Journal of Food Engineering 52(4), 349-357.

Park KJZ, Vohnikova and Brod FPR. 2002. ‘Evaluation of Drying Parameters and Desorption Isotherms of Garden Mint Leaves (Mentha crispa L). Journal of Food Engineering 51, 193-199.

Payne JH, Ley GJ, Akau G. 1941. Processing and Chemical investigation of taro, Hawaiian Philippines, 24-25 Sept. 1979. 25pp.

Rosa GS, Moraes MA, Pinto LAA. 2010. Propriétés de sorption de l’humidité du chitosane. Food Science and Technology 43(3), 415-420.

Sacilik K, Unal G. 2005. Dehydration Characteristics of Kastamonu Garlic Slices. Biosystems Engineering 92(2), 207-215.

Simal S, Mulet A, Tarrazo J, Rosello C. 1996. Drying Models for Green Peas, Food Chemistry 55(2), 121-128.

Smaniotto TAS, Resende O, Oliveira DEC, Sousa KA, Campos RC. 2012. Isotermas e calor latente de dessorcao dos graos de milho da cultivar AG 7088 [isothermes et chaleur latente de la désorption du maïs]. Revista Brasileira de Milho e Sorgo 11(3), 312-322.

Srikiatden J, Roberts JS. 2008. Predicting Moisture Profiles In Potato And Carrot During Convective Hot Air Drying Using Isothermally Measured Effective Diffusivity. Journal of Food Engineering 84(4), 516-525.

Toufeili I, Dagher S, Shadarevian S, Noureddin EA, Sarakbi M, Farran M. 1994. Formulation of gluten-free pocket-type flat breads: optimization of methylcellulose, gum Arabic, and egg albumen levels by response surface methodology. Cereal Chemistry 71, 594-601.

Van Brakel J. 1980. Mass transfer in convection drying. In: Advances in Drying, Hemisphere Publishing Corporation.

Zielinska M, Markowski M. 2010. Air drying characteristics and moisture diffusivity of carrots. Chemical Engineering and Processing: Process Intensification 49(2), 212-21.