Design and development of an arduino-based smart feeder system
Paper Details
Design and development of an arduino-based smart feeder system
Abstract
The Smart Feeder System is an autonomous feeder that is controlled by an Android and smartphone. This project allows owners to simply alter the feeding plan based on the appropriate feed dose, as well as providing Realtime feeding scheduling. The project is intended to provide an automation of feeding and watering system of the poultry. The Smart Feeder System includes a weight sensor that is used to manage the weight of chicken food. When the sensor detects that the amount of food in the container is running low, it will alert the user. NodeMCU is also included in this device, which will control the feeding. In addition, the system employs software that can design and produce a command for the devices, ensuring that they perform as intended. This system focuses on feeding and maintaining the poultry’s essential diet, as well as providing water. Two testing strategies—acceptance testing and usability testing—were conducted to rigorously evaluate the application’s quality. Each test involved distinct participants, ensuring a comprehensive assessment. The ISO/IEC software quality metrics framework was employed to objectively measure the application’s acceptability and System Usability Scale (SUS) for usability testing. Notably, the acceptance test yielded exceptional results, with an overall mean of 4.95 and a remarkable usability score of 94. These outcomes indicate that the application has undergone continuous refinement and enhancement throughout the testing process. The application’s user-friendliness and portability, including its offline functionality, are key strengths. It is now deemed ready for deployment to end-users.
AgrifoodSA. 2021. Retrieved from https://agrifoodsa.info/news/what-poultry-feeding-system#:~:text=Poultry%20feeding%20systems%20ensure%20less,spend%20on%20other%20important%20tasks
Dada EG, Theophine NC, Adekunle AL. 2018. Arduino UNO microcontroller based automatic fish feeder. The Pacific Journal of Science and Technology 19(1), 168–174.
Fanatico A. 2023. Retrieved from https://www.thepoultrysite.com/articles/feeding-chickens-for-best-health-and performance#:~:text=An%20important%20part%20of%20raising,bird’s%20performance%20and%20its%20products
Imperial IC, Ibana J, Nicdao MA, Valencia KA, Pabustan PM. 2022. Emergence of resistance genes in fecal samples of antibiotic-treated Philippine broilers emphasizes the need to review local farming practices. Retrieved from https://pubmed.ncbi.nlm.nih.gov/35507938/
Philippine Statistics Authority (PSA). 2023. Retrieved from https://psa.gov.ph/livestock-poultry-iprs/chicken/production
Rajput MS. 2021. Retrieved from https://epashupalan.com/8962/poultry-farming/automation-in-poultry-feeding/
Software Testing Fundamentals. 2022. Acceptance testing, August 29. Retrieved October 10, 2022, from https://softwaretestingfundamentals.com/acceptance-testing/
Arvin Anthony S. Araneta, 2025. Design and development of an arduino-based smart feeder system. Int. J. Biosci., 27(2), 29-36.
Copyright © 2025 by the Authors. This article is an open access article and distributed under the terms and conditions of the Creative Commons Attribution 4.0 (CC BY 4.0) license.