Determination of the best weeds control period in a soybean (Glycine max) new released hybrid:Williams

Paper Details

Research Paper 01/06/2013
Views (563)
current_issue_feature_image
publication_file

Determination of the best weeds control period in a soybean (Glycine max) new released hybrid:Williams

Bahram Mirshekari, Reza Siyami
Int. J. Biosci. 3(6), 45-48, June 2013.
Copyright Statement: Copyright 2013; The Author(s).
License: CC BY-NC 4.0

Abstract

In order to determine the critical period of weeds control in soybean in semi-arid regions two experiments were conducted at Tabriz, Iran, on soybean hybrid Williams, based on randomized complete block design. For weed-infested plots, weeds were hand removed after 20, 40 and 60 days after emergence (DAE) and were kept weed free thereafter. For weed-free plots, weeds were allowed to compete with crop plants from 20, 40 and 60 DAE thereafter. Weeds interference duration of 40 DAE or more and weed-free period of less than 40 DAE greatly reduced the number of pod bearing branches per plant. Significant reduction in soybean yield up to 50% with increasing of weeds interference duration indicates that weeds is highly competitive with crop, and their competition beyond 40 WAE, results in greater crop yield loss than 24%, compared to control. A Gompertz model provided the best fit for the maximum weed-infested experiment. The relationship of crop yield with weed-free period was best described by the Logistic equation. The best weeds control period in soybean field using 5% permissible yield loss was between 40-60 DAE.

Aguyoh JN, Masiunas JB. 2003. Interference of redroot pigweed (Amaranthus retroflexus) with snap beans. Weed Science 51, 202-207.

Blackshaw RE. 1991. Hairy nightshade (Solanum sarrachoides) interference in dry beans (Phaseolus vulgaris). Weed Science 39, 48-53.

Burnside OC, Wiens MJ, Holder BJ, Weisberg S, Ristau EA, Johnson MM, Cameron JH. 1998. Critical period for wed control in dry beans (Phaseolus vulgaris L.). Weed Science 46, 301-306.

Dabbagh Mohammady Nasab A, Javanshir A, Alyari H, Kazemi Arbat H, Moghaddam M. 2000. Interference of simulated weed (Sorghum bicolor L.) with soybean (Glycine max L.). Turkish Journal of Field Crops 5, 7-11.

Dielman A, Hamill AS, Weise SF, Swanton CJ. 1995. Empirical models of redroot pigweed (Amaranthus spp.) interference in soybean (Glycine max). Weed Science 43, 612-618.

Eftekhari A, Shirani Rad AH, Rezai AM, Salehian H, Ardakani MR. 2006. Determination of critical period of weeds control in soybean (Glycine max L.) in Sari. Iranian Journal of Crop Science 7(4), 347-364.

Evanylo GK, Zehnder GW. 1989. Common ragweed (Ambrosia artemisiifolia L.) interference in snap bean at various soil potassium levels. Applied Agricultural Research 4, 101-105.

Froud-Williams RJ. 2002. Weed competition. In: Naylor REL. Weed Management Handbook: ed., Oxford, UK: P. Blackwell Publishing, p. 48-90.

Heidari G, Sohrabi U, Mohammadi K. 2011. Interference of common lambsquarters (Chenopodium album) with sugar beet. American-Eurasian Journal of Agricultural and Environmental Science 11(3), 451-455.

Horak MJ, Loughin TM. 2000. Growth analysis of four Amaranthus species. Weed Science 48, 347-355.

Itulya FM, Mwaja VN, Masiunas JB. 1997. Collard-cowpea intercrop response to nitrogen fertilization, redroot pigweed density and collard harvest frequency. Horticultural Science 35, 850-853.

Martin SG, Van Acker RC, Friesen LF. 2001. Critical period of weed control in spring canola. Weed Science 49, 326-333.

Massinga RA, Currie RS, Horak MJ, Boyer J. 2001. Interference of palmer amaranth in corn. Weed Science 49, 202-208.

Mirshekari B, Javanshir A, Kazemi Arbat H. 2010. Interference of redroot pigweed in green bean. Weed Biology and Management 10, 120-125.

Seem JE, Cramer NG, Monks DV. 2003. Critical weed-free period for ‘Beauregard’ sweet potato (Ipomoea batatas). Weed Technology 17, 686-695.

Related Articles

Characteristics of symbiotic relationships between plants and bacteria and the influence of stress factors on them

Konul F. Bakhshaliyeva, Navai D. İmamquliyev, Mehpara İ. Gasımova, Sevda M. Muradova, Panah Z. Muradov*, Int. J. Biosci. 28(2), 75-90, February 2026.

In the line of fire: Unmasking the institutional challenges in the bureau of fire protection

Mhelen Grace F. Libre, Nancy E. Aranjuez*, Int. J. Biosci. 28(2), 53-74, February 2026.

One health approch: Diversity of domestic larval habitats and human responsibility in mosquito proliferation in Bobo-Dioulasso (Burkina Faso)

Zouéra Laouali, Kouamé Wilfred Ulrich Kouadio, Moussa Namountougou*, Int. J. Biosci. 28(2), 38-52, February 2026.

Linkages between land use change, flooding, and water quality in the Pallikaranai Marshland, Chennai, India

Arunpandiyan Murugesan, Roshy Ann Mathews, Aarthi Mariappan, J. Ranjansri, Rajakumar Sundaram, Prashanthi Devi Marimuthu*, Int. J. Biosci. 28(2), 28-37, February 2026.

Nutritional and phytochemical characteristics of Garcinia afzelii fruit

Doumbia Fanta*, Dje Kouakou Martin, Kone Daouda, Silue Sana Etienne, Kouame Lucien Patrice , Int. J. Biosci. 28(2), 17-27, February 2026.

Sensory evaluation of horn snail (Telescopium telescopium) patty

Ma. Isabel P. Lanzaderas, Gilbert P. Panimdim, Proceso C. Valleser Jr.*, Int. J. Biosci. 28(2), 7-16, February 2026.

Two years evolution of deltamethrin, malathion and pirimiphos-methyl resistance in Aedes aegypti from urban in peri urban sites of Ouagadougou, Burkina Faso

Hyacinthe K. Toe*, Moussa W. Guelbeogo, Soumananaba Zongo, Aboubacar Sombie, Athanase Badolo, Int. J. Biosci. 28(2), 1-6, February 2026.

Physicochemical characterization of annatto seeds (Bixa orellana) sold in Ouagadougou and their oils extracted using chemical processes

Mah Alima Esther Traoré*, Adama Lodoun, Pingdwindé Marie Judith Samadoulougou-Kafando, Nestor Beker Dembélé, Kiswendsida Sandrine Léticia Dayamba, Charles Parkouda, Int. J. Biosci. 28(1), 169-178, January 2026.