Development and testing of mechanical pollinator for bell pepper in controlled environment agriculture

Paper Details

Research Paper 01/09/2019
Views (628)
current_issue_feature_image
publication_file

Development and testing of mechanical pollinator for bell pepper in controlled environment agriculture

Zia-Ul-Haq, Muhammad Rehan Jamil, Yasir Khalil, Muhammad Arslan Anwar, Yasir Mehmood, Muhammad Adnan Islam, Talha Mehmood, Sohail Raza Haidree, Hamza Muneer Asam
Int. J. Biosci. 15(3), 528-532, September 2019.
Copyright Statement: Copyright 2019; The Author(s).
License: CC BY-NC 4.0

Abstract

Off-season production of sweet pepper (Capsicum annuum L.) can achieve recommended consumption with high profit. The process of transfer of pollen grains from the male anther of a flower to the female stigma is known as pollination process. Usually it requires greenhouses construction. Many crops rely on insect pollination. However, insects are commonly not possible in greenhouses due to their control environment, which is a major pollination problem that can decrease fruit size and yield by directly reducing pollen deposition. To avoid this issue, a handy mechanical pollinator was developed with main components; DC motor, rod, battery (4 volts), cam on DC motor, oscillating device, switch, wires, battery connectors and rubber band at Faculty of Agricultural Engineering and Technology. For testing of machine an experiment was conducted at Institute of Hydroponic Agriculture, PMAS-Arid Agriculture University Rawalpindi in cropping season of 2018-19. It was experimentally manipulated artificial/mechanical pollination and its performance was compared with self-pollination. Data were recorded on diameter of fruits (cm), fruit weight per plant (kg), yield (t/ha). For statistical analysis, Statistix. 8.1 software was used by selecting Complete Randomized Design (CRD) with five repeats. All the parameters measured differed significantly. Artificial pollination increased fruit size, suggesting hypothesis that sufficient pollination increases plant fitness.

Abrol DP. 2013. Pollination biology: biodiversity conservation and agricultural production. New York.

Aliyu L. 2000. The effects of organic and mineral fertilizer on growth, yield and composition of pepper. Biological Agriculture and Horticulture 18, 29-36

Benjamin FE, Winfree R. 2014. Lack of pollinators limits fruit production in commercial blueberry (Vaccinium corymbosum). Environ. Entomol 43, 1574-1583.

Cuellar J, Cooman A, Arjona H. 2001. Increase of the productivity of a greenhouse tomato crop improving the pollination. Agronomia Colombiana 18(3), 39-45.

Eriksson O. 2013. A comparative study of seed number, seed size, seedling size and recruitment in grassland plants. Oikos 88, 494-502.

Hanna HY. 2004. Air blowers are less effective pollinators of greenhouse tomatoes than electric vibrators but cost less to operate. Hort. Technology 14(1), 104-7.

Kelley WT, Boyhan G. 2009. Commercial Pepper Production Handbook. The University of Georgia, Cooperative Extension.

Klein AM. 2009. Nearly rainforest promotes coffee pollination by increasing spatio-temporal stability in bee species richness. Forest Ecology and Management 258, 1838-1845.

Sabir N, Singh B. 2013. Protected cultivation of vegetables in global arena: A review. Indian Journal of Agricultural Sciences 83(2), 123-35.

Sinsinwar S, Teja K. 2012. Development of a cost effective, energy sustainable hydroponic fodder production device. Agri. Engineering Interns. III, Kharagpur p 335.

Sreedhara DS, Kerutagi MG, Basavaraja H, Kunnal LB, Dodamani MT. 2013. Economics of capsicum production under protected conditions in Northern Karnataka. Karnataka Journal of Agricultural Sciences 26, 217-219.

Tesfaw A. 2013. Benefit-cost analysis of growing pepper: A trial at west Gojjam, near the source of blue Nile. International Journal of Agriculture and Crop Sciences 6, 1203-1214.

Related Articles

Rice productivity and soil hydrodynamic properties under lowland Elaeis guineensis and Borassus aethiopum: An asset rice agroforestry system

Sissou Zakari, Pierre Tovihoudji, Janvier Egah, Sékaro Amamath Boukari, Raymon Bio Gonga, Mouiz W. I. A. Yessoufou, Imorou F. Ouorou Barrè, Int. J. Biosci. 27(4), 177-190, October 2025.

Population dynamic parameters for Pseudupeneus prayensis (Mullidae) (Cuvier, 1829) in Ivorian continental shelf

Christian Bernard Tia, Abdoulaye Kone, Diomande Loua, Soumaïla Sylla, Essetchi Paul Kouamelan, Int. J. Biosci. 27(4), 169-176, October 2025.

Evaluation of phytochemicals and in vitro biological activities of Semecarpus kurzii leaf extract

Deepika, V. Ambikapathy, S. Babu, A. Panneerselvam, Int. J. Biosci. 27(4), 159-168, October 2025.

Comparative analysis of the influence of temporal, seasonal and behavioral factors using XGBoost for predicting traveled distances

Y. F. Lankoande, A. K. Gandema, S. Ouedraogo-Kone, A. Kone, Y. Sawadogo, J. Moses, Int. J. Biosci. 27(4), 150-158, October 2025.

The protective effect of black pepper (Piper nigrum) on liver enzymes in streptozotocin-induced diabetic rats

Amani A. R. Filimban, Khulud A. Wathi, Int. J. Biosci. 27(4), 140-149, October 2025.

Production of bioplastics (PHB) using waste paper as feed stock by Cupriavidus taiwanensis

Ajeena Davis, Jini Joseph, Int. J. Biosci. 27(4), 130-139, October 2025.

Gill ectoparasites of the mugilidae from the Ebrié lagoon, Abidjan (Côte d’Ivoire)

Eby Yoboué Gnamma Honorine Alla, Carel Wilfried Bermian Dibi-Ahui, Fidèle Kouassi Kouakou, Abouo Béatrice Adepo-Gourene, Int. J. Biosci. 27(4), 123-129, October 2025.

Impacts of diverse water management systems on growth and yield of two prominent boro rice cultivars in Bangladesh

Zahidul Islam, Md Ekhlasur Rahman, Md Khayrul Islam Bashar, Sharmin Sultana, Md Taharat Al Tauhid, Md Rabiul Islam, Md Shahed Hossain, Md Musa Mondal, Pradip Kumar Biswas, Int. J. Biosci. 27(4), 110-122, October 2025.