Development and testing of mechanical pollinator for bell pepper in controlled environment agriculture

Paper Details

Research Paper 01/09/2019
Views (656)
current_issue_feature_image
publication_file

Development and testing of mechanical pollinator for bell pepper in controlled environment agriculture

Zia-Ul-Haq, Muhammad Rehan Jamil, Yasir Khalil, Muhammad Arslan Anwar, Yasir Mehmood, Muhammad Adnan Islam, Talha Mehmood, Sohail Raza Haidree, Hamza Muneer Asam
Int. J. Biosci. 15(3), 528-532, September 2019.
Copyright Statement: Copyright 2019; The Author(s).
License: CC BY-NC 4.0

Abstract

Off-season production of sweet pepper (Capsicum annuum L.) can achieve recommended consumption with high profit. The process of transfer of pollen grains from the male anther of a flower to the female stigma is known as pollination process. Usually it requires greenhouses construction. Many crops rely on insect pollination. However, insects are commonly not possible in greenhouses due to their control environment, which is a major pollination problem that can decrease fruit size and yield by directly reducing pollen deposition. To avoid this issue, a handy mechanical pollinator was developed with main components; DC motor, rod, battery (4 volts), cam on DC motor, oscillating device, switch, wires, battery connectors and rubber band at Faculty of Agricultural Engineering and Technology. For testing of machine an experiment was conducted at Institute of Hydroponic Agriculture, PMAS-Arid Agriculture University Rawalpindi in cropping season of 2018-19. It was experimentally manipulated artificial/mechanical pollination and its performance was compared with self-pollination. Data were recorded on diameter of fruits (cm), fruit weight per plant (kg), yield (t/ha). For statistical analysis, Statistix. 8.1 software was used by selecting Complete Randomized Design (CRD) with five repeats. All the parameters measured differed significantly. Artificial pollination increased fruit size, suggesting hypothesis that sufficient pollination increases plant fitness.

Abrol DP. 2013. Pollination biology: biodiversity conservation and agricultural production. New York.

Aliyu L. 2000. The effects of organic and mineral fertilizer on growth, yield and composition of pepper. Biological Agriculture and Horticulture 18, 29-36

Benjamin FE, Winfree R. 2014. Lack of pollinators limits fruit production in commercial blueberry (Vaccinium corymbosum). Environ. Entomol 43, 1574-1583.

Cuellar J, Cooman A, Arjona H. 2001. Increase of the productivity of a greenhouse tomato crop improving the pollination. Agronomia Colombiana 18(3), 39-45.

Eriksson O. 2013. A comparative study of seed number, seed size, seedling size and recruitment in grassland plants. Oikos 88, 494-502.

Hanna HY. 2004. Air blowers are less effective pollinators of greenhouse tomatoes than electric vibrators but cost less to operate. Hort. Technology 14(1), 104-7.

Kelley WT, Boyhan G. 2009. Commercial Pepper Production Handbook. The University of Georgia, Cooperative Extension.

Klein AM. 2009. Nearly rainforest promotes coffee pollination by increasing spatio-temporal stability in bee species richness. Forest Ecology and Management 258, 1838-1845.

Sabir N, Singh B. 2013. Protected cultivation of vegetables in global arena: A review. Indian Journal of Agricultural Sciences 83(2), 123-35.

Sinsinwar S, Teja K. 2012. Development of a cost effective, energy sustainable hydroponic fodder production device. Agri. Engineering Interns. III, Kharagpur p 335.

Sreedhara DS, Kerutagi MG, Basavaraja H, Kunnal LB, Dodamani MT. 2013. Economics of capsicum production under protected conditions in Northern Karnataka. Karnataka Journal of Agricultural Sciences 26, 217-219.

Tesfaw A. 2013. Benefit-cost analysis of growing pepper: A trial at west Gojjam, near the source of blue Nile. International Journal of Agriculture and Crop Sciences 6, 1203-1214.

Related Articles

Hepatoprotective and antinociceptive effects of terpinolene in streptozotocin-induced diabetic peripheral neuropathic rats

Ravishankar Sarumathi, Muthukumaran Preethi, Chandrasekaran Sankaranarayanan*, Int. J. Biosci. 27(6), 156-166, December 2025.

Agromorphological characterization of six promising bambara groundnut [Vigna subterranea (L.) Verdc.] genotypes under selection in Burkina Faso

Adjima Ouoba*, Ali Lardia Bougma, Dominique Nikiéma, Mahamadi Hamed Ouédraogo, Nerbéwendé Sawadogo, Mahama Ouédraogo, Int. J. Biosci. 27(6), 145-155, December 2025.

Integrated in silico and in vitro analyses reveal E-cadherin crosstalk and TF: FVIIa complex-mediated trophoblast motility via MEK/JNK activation

Kirthika Manoharan, Jagadish Krishnan, Vijaya Anand Arumugam, Shenbagam Madhavan*, Int. J. Biosci. 27(6), 136-144, December 2025.

Effect of flooding depth and harvest intensity on soil moisture dynamics and production of baobab (Adansonia digitata) seedlings

Sissou Zakari, Pierre G. Tovihoudji, Mouiz W. I. A. Yessoufou, Sékaro Amamath Boukari, Vital Afouda, Imorou F. Ouorou Barrè, Int. J. Biosci. 27(6), 127-135, December 2025.

Local food processing and associated hygienic quality in greater Lomé, Togo: Traditional cooked corn-based dough akpan wrapped in M. cuspidata, M. mannii and M. purpurea species leaves

Mamy Eklou, Komlan Edjèdu Sodjinou, Kodjo Djidjolé Etse, Awidèma Adjolo, Benziwa Nathalie Johnson, Bayi Reine Dossou, Yaovi Ameyapoh, Raoufou Radji, Akossiwoa M-L Quashie, Int. J. Biosci. 27(6), 114-126, December 2025.

Improving the microbiological quality of spices and spice blends using treatments accessible to SMEs/SMIs

Pingdwindé Marie Judith Samadoulougou-Kafando, Korotimi Traoré, Crépin Ibingou Dibala, Aboubacar Sidiki Dao, Josias Nikiema, Idrissa Taram, Adama Pare, Inoussa Salambéré, Donatien Kaboré, Charles Parkouda, Int. J. Biosci. 27(6), 102-113, December 2025.

Twin-row planting practice in village sugarcane (Saccharum officinarum L.) plantations during first ratoon under rainfed conditions in northern Côte d’Ivoire

Allé Yamoussou Joseph, Sawadogo Fatima, Traoré Mohamed Sahabane, Fondio Lassina, Int. J. Biosci. 27(6), 91-101, December 2025.

Prevalence of dengue infection in Delta State, Nigeria

P. A. Agbure, O. P. G. Nmorsi, A. O. Egwunyenga, Int. J. Biosci. 27(6), 82-90, December 2025.