Developmental impacts on wild goat’s (Capra aegagrus) ecosystem in Markazi province and its solutions

Paper Details

Research Paper 01/07/2014
Views (569)
current_issue_feature_image
publication_file

Developmental impacts on wild goat’s (Capra aegagrus) ecosystem in Markazi province and its solutions

Amir Ansari , Mahmode Karami, Hamid Reza Rezai , Borhan Riazi
J. Biodiv. & Environ. Sci. 5(1), 145-149, July 2014.
Copyright Statement: Copyright 2014; The Author(s).
License: CC BY-NC 4.0

Abstract

Markazi province with its elevated mountains is a suitable habitat for the wild goat(Capra aegagrus) such that the species has been chosen as the symbol of biodiversity in the province. The fragmentation of habitat due to the human-initiated activities is one of the major threatening factors against the species viability. The study is under taken using the MAXENT method based on the maximum entropy or near to reality approach with 10 different variables. The study results indicate that a 1698.78 Km² area equivalent to 11% in the southern half of Markazi province covers a favorable habitat for the wild goat. The ROC model specifies that the validity of habitat suitability model is 0.978 indicating the superior performance of MAXENT method. Among the development variables, the highest impact on the wild goat ecology is assigned to distance to cities variable (20Km) while the lowest impact is related to distance from unpaved road variable. And among the ecologic variables, the highest impact is determined for slop variable (20%) and the lowest impact is related to height variable..The protection of the extant population, inter-regional corridors, live capturing, sending the wild goat from other regions to Jasb and Rasvand, and restoring the wild goat in Alvand and Bazerjan in Tafresh, Iran.

Ansari A. 2008. Monitoring Ecosystems and Natural Habitats of Markazi Province Identification of Degraded and Vulnerable Habitats . J DOE , 47:22-32.

Behdarvand N. 2012. Modelling of recent wolves (Canis lupus) attack on human and herdinHamedan province. M.Sc Faculity of Natural Resources Department of Environmental.

Fahrig L. (2003). Effects of habitat fragmentation on biodiversity . Annual Review of Ecology Evolution and Systematic, 34, 487-515.

Giovanelli JGR, De Siqueira MF, Haddad CFB, Alexandrino J. Modeling a spatiallyrestricted distribution in the Neotropics: how the size of calibration area affects the performanceof five presence-only methods. Ecological Modelling. 2010(221), 215–224.

Kauzeni AS. 1995. A Paradigm for Community Wildlife Management: The Case of Protected Areas of the Serengeti Region Ecosystem. Research paper No. 37 (NewSeries). Dar es Salaam, Tanzania: Institute of Resource Assessment, University of Dar es Salaam.

Malekian M. 2007. Effects of habitat fragmentation on the genetic diversity and population structure Petaurusbreviceps species in southeast Australia. Th National Biotechnology Congress of Iran 5-3 November.

Meffe GK, Carroll CR, Contributors. 1997. Principles of Conservation Biology. Second edition. Sinauer and Associates Inc., Sunderland, MA. 729 p.

Noss RF, Cooperrider AY. 1994. Saving Nature’s Legacy: Protecting and Restoring Biodiversity. Defenders of Wildlife and Island Press, Washington, D.C.

Pearson RG. Species’ distribution modeling for conservation educators and practitioners. American Museum of Natural History. 2007, 1-50.

Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecological Modelling. 2006: 190: 231-259.

Weinberg P, Jdeidi T, Masseti M, Nader I, Cuzin F. 2008. Capra aegagrus. In: IUCN 2008. 2008 IUCN Red List of Threatened Species

Wilcove DS, McLellan CH, Dobson AP. 1986. Habitat fragmentation in the temperate zone. In M.E. Soule (ed.), Conservation Biology: The Science of Scarcity and Diversity, 237-256 p. Sinauer Associates, Sunderland, MA.

Ziaie H. 2008. A Fied Guide to the Mammals of Iran Second Edition, 360- 364

Related Articles

Agroforestry in woody-encroached Sub-Saharan savannas: Transforming ecological challenges into sustainable opportunities

Yao Anicet Gervais Kouamé, Pabo Quévin Oula, Kouamé Fulgence Koffi, Ollo Sib, Adama Bakayoko, Karidia Traoré, J. Biodiv. & Environ. Sci. 27(3), 10-22, September 2025.

Extreme rainfall variability and trends in the district of Ouedeme, municipality of Glazoue (Benin)

Koumassi Dègla Hervé, J. Biodiv. & Environ. Sci. 27(3), 1-9, September 2025.

Heterosis breeding, general and specific combining ability and stability studies in pearl millet: Current trends

Ram Avtar, Krishan Pal, Kavita Rani, Rohit Kumar Tiwari, Mahendra Kumar Yadav, J. Biodiv. & Environ. Sci. 27(2), 117-124, August 2025.

Combining ability, heterosis and stability for yield and fibre quality traits in cotton: Breeding approaches and future prospects

Rohit Kumar Tiwari, Krishan Pal, R. P. Saharan, Ram Avtar, Mahendra Kumar Yadav, J. Biodiv. & Environ. Sci. 27(2), 109-116, August 2025.

Bridging the COPD awareness gap in marginalized populations: Findings from a multicentre study in Khalilabad, Sant Kabir Nagar, Uttar Pradesh, India

Anupam Pati Tripathi, Jigyasa Pandey, Sakshi Singh, Smita Pathak, Dinesh Chaudhary, Alfiya Mashii, Farheen Fatima, J. Biodiv. & Environ. Sci. 27(2), 97-108, August 2025.

Antioxidant and anti-inflammatory activity of Pleurotus citrinopileatus Singer and Pleurotus sajor-caju (Fr.) Singer

P. Maheswari, P. Madhanraj, V. Ambikapathy, P. Prakash, A. Panneerselvam, J. Biodiv. & Environ. Sci. 27(2), 90-96, August 2025.

Mangrove abundance, diversity, and productivity in effluent-rich estuarine portion of Butuanon River, Mandaue City, Cebu

John Michael B. Genterolizo, Miguelito A. Ruelan, Laarlyn N. Abalos, Kathleen Kay M. Buendia, J. Biodiv. & Environ. Sci. 27(2), 77-89, August 2025.

Cytogenetic and pathological investigations in maize × teosinte hybrids: Chromosome behaviour, spore identification, and inheritance of maydis leaf blight resistance

Krishan Pal, Ravi Kishan Soni, Devraj, Rohit Kumar Tiwari, Ram Avtar, J. Biodiv. & Environ. Sci. 27(2), 70-76, August 2025.