Welcome to International Network for Natural Sciences | INNSpub

Effect of heavy metals (copper, zinc, cadmium and lead) on the accumulation of proline and soluble sugars in Atriplex canescens (Pursh) Nutt

Research Paper | September 1, 2017

| Download 5

Khedim Ikram, Houcine Abdelhakim Reguieg Yssaad, Bülent Topcuoglu

Key Words:

Int. J. Biosci.11( 3), 76-85, September 2017

DOI: http://dx.doi.org/10.12692/ijb/11.3.76-85


IJB 2017 [Generate Certificate]


The Atriplex canescens is well adapted to extreme environmental conditions and   present properties accumulator of heavy metals. Our study is to investigate the effect accumulator of heavy metals (copper, zinc, cadmium and lead) by the Atriplex canescenss stressed after 60 days of the sowing. It applying five different doses to the plant Atriplex canescens for two weeks for: Zn, Cd, Pb (0, 2500, 5000, 7500, and 10000 ppm) and for copper (0, 2000, 2500, 3000 and 3500 ppm). The contents of proline and the soluble sugars were analyzed by spectrophotometry. The results obtained show an increase in the content of proline and soluble sugars according to the increasing concentration of heavy metals to the levels of the leaves and the roots. The contents of proline and the soluble sugars in leaves are widely superior to those of the roots. The highest contents inproline and soluble sugars in the leaves (74.45 mg. g-1 dry weight of the proline and 23.82 mg. g-1 dry weight of soluble sugars) are obtained in the dose of 10000 ppm of (zinc, cadmium) respectively. On the other hand, the highest contents proline and soluble sugars in roots are obtained in the metallic dose of 10000 ppm for the cadmium and the zinc respectively (46mg. g-1 dry weight of the proline and 10.26 mg. g-1 dry weight of soluble sugars). The obtained results are in favour of the implication of Atriplex canescens in a project of phytoremediation to clean up the contaminated soils.


Copyright © 2017
By Authors and International Network for
Natural Sciences (INNSPUB)
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Effect of heavy metals (copper, zinc, cadmium and lead) on the accumulation of proline and soluble sugars in Atriplex canescens (Pursh) Nutt

Azzouz F. 2011. Effect of the interaction lead-salinity on the physiological responses and biochemical evidence of a halophyte (Atriplexhalimus L.)and a glycophyte (Viciafaba L.).Memory of Magisterium.65 p.

Balestrasse KB, Gallego SM, Benavides MP, Tomaro ML. 2005. The polyamines and proline are affected by cadmium stress in the nodules and roots of soybean plants. Plant and Soil 270, 343-353. https://doi.org/10.1007/s11104-004-1792-0.

Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39(1), 205-207. https://doi.org/10.1007/BF00018060

BouchoukhI. 2009. Eco behavior-physiological two Chenopodiaceae genera Atriplex and Spinacia submitted to saline stress. Memory of the magisterium in Ecophysiology and plant biotechnology. Mentouri University-Constantine, Algeria. 103, 38-91-92.

Bouzoubaa Z, El Mourid M, Karrou M, El Gharous MR. 2001. Manual of chemical and biochemical analysis of the plants. The Deroua Experimental Station of Institut National de Recherche Agronomique Morocco.

Brugnoli E, Lauteri MR. 1991.Effects of salinity on stomatal conductance, phytosynthetic capacity and carbon isotope discrimination of salt tolerant (Gossypiumhirsutum L.) and salt sensitive (Phaseolus vulgaris L.) C3 nonhalophytes. Plant Physiology 95, 628-635. https://doi.org/10.1104/pp.95.2.628.

Cheikh M’hamed H, Abdellaoui R, Kadri K, Ben Naceur M, BelHadj S. 2008. Evaluation of the salt stress tolerance of a few accessions of barley (HordiumVidgare L.) grown in Tunisia.Physiological approach. 30- 37.

Cunningham SD, Berti WR. 1993. Remediation of contaminated soil with green plants. In vitro Cellular Developmental Biology 29, 207-212. https://doi.org/10.1007/BF02632036.

Debtor N. 2012. Tests of use of radish (Raphanus sativus) in the phytoremediation (bioremediation) at the level of the soil contaminated by heavy metals (lead): Study of oxidative stress and a few settings enzymatic. Doctoral thesis.Laboratory of Experimental Biotoxicologie, bioremediation and phytoremediation 18, 19-79.

Djeddi H. 2006. Use of the waters of a wastewater treatment plant for the irrigation of forest tree species in urban areas. Memory of Magisterium. Laboratory of Plant Ecology. University Mentouri  Constantine. 92 p.

Djerroudi-Zidane O, Belkhodja M, Bissati S, Hadjadj S. 2010. Effect of saline stress on the proline accumulation in two species  Atriplex halimus L. and Atriplex canescens (Pursh) Nutt. European Journal of scientific research 41(2), 248-259.

Dubois M, Gilles K, Hamilton J, Rebers P, Smith F. 1956. Colorimetric Method for Determination of sugar and related substances. Analytical Chemistry 28, 350- 356. https://doi.org/10.1021/ac60111a017.

El Shintinawy F, Hassanein RA. 2001. Changenes in growth, protein patterns and DNA fingerprints of NaCl stressed treated with arginine, putrescine or phenylenediamine. Egyptian Journal of      Biotechnology 10, 405-415.

Hadjadj S, Djerroudi O, Bissati S. 2011. Acomparative study of the biochemical mechanisms of salt stress tolerance of two species of Atriplex: Atriplexhalimus L. and Atriplex canescens (Purch) Nutt. Algerian Journal of arid environment 1(2), 3-10.

Hajihashemi S, Kiarostami K, Enteshari  S, S bora A. 2006. The effects of salt Stress and Paclobutrazolon Some Physiological of two salt- tolérant and salt sensitive cultivars of wheat. Pakistan Journal of Biological 9, 1370-1374.

Hoagland DR, Arnon DI. 1938. The water-culture method for growing plants without soil. Circular. 347, 1-39.

Janmohammadi M, Bihamta MR, Ghasemzadeh F. 2013. Influence of rhizobacteria inoculation and lead stress on the physiological and biochemical attributes of wheat genotypes. Cercetâri Agronomiceîn Moldova 46(1), 153p. https://doi.org/10.2478/v10298-012-0074-x

Karimi N, Khanahmadi M, Moradi B. 2012.Accumulation and phytotoxicity of lead in Cynara scolymus. Indian Journal of Science and Technology 5(11), 3634-3641.

Kylin A, Quatrano RS. 1975. Metabolic and biochemical aspects of salt tolerance. Plants in saline environments. 147-167.

Lei YB, Korpelainen H, Li CY. 2007. Physiological and biochemical responses to high Mn consentrations in two contrasting Populus cathayana population. Chemosphere 68(4), 686-694.  https://doi.org/10.1016/j.chemosphere.2007.01.066

Martinez JP, Ledent JF, Bajji M, Lutts S. 2003. Effect of water stress on growth, Na+ and K+ accumulation and water use efficiency in relation to osmotic adjustment in two populations of Atriplex halimus L. Plant Growth Regulation 41, 63-73. https://doi.org/10.1023/A:1027359613325.

Mile O, Mészâros I, Veres SZ, Lakatos G.2002. Ecophysiological study on the salt tolérance of a pannonian endemism (Lepidium crassifolium (W. et K.)) in inland saline area. In Proceedings of the 7 thHungarian congress on plant physiology 46(3-4), 249-250.

Mulas M, Mulas G. 2004. The potential for strategic use of plants of the genera Atriplex and Opuntia in the fight against desertification. Short and Medium – Term Priority Environmental Action Program. University Of Studies Of Sassari Research Group on Desertification. 112p.

Naderi N, Mirzamasoumzadeh B, Aghaei A. 21 3. Effects of different levels of lead (Pb) on physiological characteristics of sugar beet. International Journal of agriculture and crop sciences 5(10), 1154-1157.

Parida AK, Das AB. 2005.  Salt tolerance and salinity effects on plants. Ecotoxicology and environmental safety 60(3), 324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010

Ramel F. 2009. Involvement of soluble sugars in the stress responses xenobiotic oxidative and in Arabidopsis thaliana, University of Rennes 1, Rennes, 230p.

Raskin I, Kumar NPBA, Dushenkov S, Salt DE. 1994. Bioconcentration of heavy metal by plant. Current Opinion in Biotechnology 5, 285-290. https://doi.org/10.1016/0958-1669(94)90030-2.

Rathinasabapathi B, Sigua C, Ho I, Gage DA. 2000. Osmoprotectant B alanine betaine  synthesis in the Plumbaginaceae: S-adenosyl-L-methionine depend N- methylation of B-alanine to its betaine is via N-methyl and N,N-diemethyl B-alanines. Physiologia Plantarum 109,  225-231. https://doi.org/10.1034/j.1399-3054.2000.100302.x.

Sharma SS, Dietz KJ. 2006. The significance of amino acids and amino-derived molecules in plant responses and adaptation to heavy metal stress. Journal of experimental botany 57(4), 711-726. https://doi.org/10.1093/jxb/erj073

Singh HAS, Kumar CS, Agarwal A. 2012.  Physiological study of combined heavy metal stress on Hydrilla verticillata (I.f.)Royle. International Jou rnal of Environmental Sciences 2(4). https://doi.org/10.6088/ijes. 00202030106.

Szabados THE, Savoure A. 2009. Proline: a multi functional amino acid. Trends in Plant Science 15(2), 89- 97. https://doi.org/10.1016/j.tplants.2009.11.009

Thiery l, Leprince AS, Lefebvre D, Ghars MA, Debarbieux E, Savoure A. 2004. Phospholipase D is a negative regulator of proline biosynthesis in Arctbidopsis thaliana. Journal of Biological Chemistry. 279(15), 14812-14818. https://doi.org/10.1074/jbc.M308456200.

Zerrad W, Hillali S, Mataoui B,EL Antri S, Hm yene A. 2006. Comparative study of the biochemical mechanisms of resistance to water stress of two varieties of durum wheat. Lebanese Science Journal 9(2).

Zhang J, Nguyen HT, Blumo A. 1999. Genetic analysis of osmotic adjustment in crop plant.Journal of Experimental Botany 50(322), 291–302. https://doi.org/10.1093/jxb/50.332.291