Effect of interaction zinc-salinity of soil on parameters (proline, soluble sugar and protein) in bean (Vicia faba L.)

Paper Details

Research Paper 01/09/2018
Views (364) Download (13)
current_issue_feature_image
publication_file

Effect of interaction zinc-salinity of soil on parameters (proline, soluble sugar and protein) in bean (Vicia faba L.)

Hadjira Bouker, Houcine Abdelhakim Reguieg Yssaad, Mohamed Arbaoui, Amaria Belarbi
Int. J. Biosci.13( 3), 51-57, September 2018.
Certificate: IJB 2018 [Generate Certificate]

Abstract

The weakness of agricultural production in Algeria is one of the main constraints to meet the needs of consumption, while soil pollution by heavy metals and salinity becomes a factor of more or less concern for agriculture with detrimental effects on crop production and biodiversity. We are interested in this research work, to study the biochemical behavior of a model plant (Vicia faba L.) in the face of metal and salt stress. For this, we studied the effect of four concentrations of zinc sulphate (0, 300, 500 and 700 ppm) combined with 100 and 200 meq.l-1 of NaCl for 2 weeks, after 45 days of plant growth. Levels of proline, proteins and soluble sugars were analyzed by spectrophotometry. The results obtained show an increase in the content of proline and soluble sugars as a function of the increasing concentration of zinc and NaCl at leaf and root levels. The levels of proline and soluble sugars in the leaves are much higher than those of the roots. The content of proline and the higher soluble sugars (168.727 mg g-1 dry weight and 56.274 mg g-1 dry weight respectively) are obtained at the dose of 700 ppm of zinc combined with 200 meq.l-1 of NaCl. The results obtained show that the combined effect of zinc and salt results in a significant decrease in the total protein content of the treated plants, the lowest levels of protein in the leaves are obtained at the dose of zinc of 700 ppm added to 200 meq.l-1   (33.68 mg.g-1 dry weight).

VIEWS 15

AIT-SADI M. 1990. comportement biochimique de quelques lignées de fève (Vicia faba L.) soumises à la salinité : étude particulière de la proline. Memoir DES, University Senia, p 65. https://doi/pdf/10.1080/12538078.1996.10515315

Baatour O, M’rah S, Ben Brahim N, Boulesnem F, Lachaal M. 2004-Réponse physiologique de la gesse (Lathyrus sativus) à la salinité du milieu. Revue  des regions arides, 1, p 346-358.

Boawn LC, Rasmussen PE. 1971. Crop response to excessive zinc fertilization of alkaline soil. Agronomy Journal, 63(6), 874–876. https://doi/10.2134/agronj1971.00021962006300060015x

Boutellier E. 1986. Effet du chlorure de sodium sur la physiologie du cotonnier , Gossypium hirsutum L. son rôle dans l’acquisition de la résistance à la sécheresse. Thèse Doc Univer., Paris 6, p 142.

Bouzoubaa Z, El Mourid M, Karrou M, El Gharous MR. 2001. Manual of chemical and biochemical analysis of the plants. The Deroua Experimental Station of Institut National de Recherche Agronomique Morocco. http://dx.doi.org/10.12692/ijb/11.3.205-212

Bradford M. 1976. A rapid and sensitive method for the quantotation of protein utilizing the principe of protein-dye briding. Analytical Biochemistry 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3

Broadley , Martin R., Philip J. White, John P. Hammond, Ivan Zelko, Alexander Lux. 2007. « Zinc in plants ». New Phytologist 173 (4): 677–702. https://doi.org/10.1111/j.1469-8137.2007.01996.x

Carroll MD, Loneragan JF. 1968. Response of plant species to concentrations of zinc in solution. I. Growth and zinc content of plants. Crop and Pasture Science 19(6), 859– 868.

Cheikh M’hamed H, Abdellaoui R, Kadri K, Ben Naceur M, BelHadj S. 2008. Evaluation of the salt stress tolerance of a few accessions of barley (Hordium vidgare L.) grown in Tunisia. Physiological approach. 30- 37. http://dx.doi.org/10.12692/ijb/11.3.205-212

Costa G, et Spitz E. 1997. Influence of cadmium on soluble carbohydrate, free amino acids, protein content of in vitro cultured Lupinus albus. Plant Sci. 128, 131-140.

Dubey RS, et Singh AK. 1999. Salinity induces accumulation of soluble sugars and alters the activity of sugar metabolizing enzymes in rice plants. Biol. Plant 42, 233-239. https://doi.org/10.1023/A:1002160618700

Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Calorimetric method for determination of sugars and related substances. Analytical Chemistry 28(3), 350-356. https://doi.org/10.1021/ac60111a017

Gaballah MS, Gomaa AM. 2007. performance of  Faba been varieties grown under salinity stress and biofertilized with yeast .J.of Applied Science 4(1), 93-99. https://doi.org/10.3923/jas.2004.93.99

Hassani A, Dellal A, Belkhodja M, Kaid-Harche M. 2008. Effet de la salinité sur l’eau et certains osmolytes chez l’orge(hordeum vulgare). European Journal of Scientific  Researche 23(1), p 61-69.

Hernandez S, Deleu C.et Larche RF. 2000. Accumulation de proline dans les tissus foliaires de tomate en réponse à la salinité. Comptes Rendus Académie des sciences. Paris, Sciences de la vie/life sciences 323, 551-557.

Hoagland DR, Arnon DI. 1938. The water-culture method for growing plants without soil.  california agricultural experiment station publications; ucdavisamericana  347, 1-39.

HU CA, Delauney AJ, Verma DP. 1992.A bifunctional enzyme (delta 1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plant. Proceeding of the National Academy of Sciences of the united states.

Imamulhuq S, Larher F. 1985 .Dynamic of Na+ ,K+ , and proline accumulation in salt-treated Vigna sinensis L. and Phaseolus aureus L. J.plant.physiol., 119, p 133-147. https://doi.org/10.1016/j.jplph.2017.07.009

JOSHI. 1984. Effect of salinity stress on organic and mineral constituents in the leaves of pigeonpea Cajanus cajan L. Var.C-11. plant and soil 82, p 69-76.

Legros JP. 2009.les grands sols du monde. Presse polytechniques et universitaires Romandes, 574p.

Marschner, Horst. 2011. Marschner’s mineral nutrition of higher plants. Academic press.

Monneveux PH, Nemmar M. 1986. Contribution  à l’étude de la résistance à la  sécheresse chez le blé tendre (Triticum aestivum L.) et chez le blé dur (Triticum durum Desf.): Etude de l’accumulation de la proline au cours du cycle de développement. Agronomie, 6(6), 583-590.

Paquin R,  Pelletier. 1987. Influence de l’âge des plantes sur la tolérances au gel et la teneur en proline et en matière sèche de la luzerne (medicago media pers) Acta Oecol. plant, p 69-80. https://doi.org/10.1080/12538078.1996.10515315

Parida AK, Das AB, Sanada Y, Mohanty P. 2004. Effects of salinity on biochemical comportments of the mangrove Aegiceras corniculatum,Aquatic Botany 80, 77-87.

Popova L, Stoinova Z, Maslenkova L. 1995. Involvement of abscisic acid in photosynthetic process in Hordeum vulgare L. during salinity. stress. J. of plant growth regulation 14, 211-218. https://doi.org/10.1007/PL00007029

Rathinasabapathi B. 2000.Metabolic engineering for stress tolerance: installing osmoprotectant synthesis pathways. Ann. botany 86, p 709-716. https://doi.org/10.1006/anbo.2000.1254

Soucci M, Ocana  A, Liuch C. 1998. Effects of  salt stress ongrouth, photosynthesis and nitrogen fixation in chick-pea (Cicer arietinum L.) J. Exp. Botany 49, 1329-1337.

Yang X, Feng Y, He Z, Stoffella PJ. 2005. Molecular mechanisms of heavy metal hyper accumulation and phytoremediation. Journal of Trace Elements in Medicine and Biology 18, 339-353. https://doi.org/10.1016/j.jtemb.2005.02.007