Effect of Mg,Cu,Cd and Mg/Cd, Cu/Cd on stress biomarkers in durum wheat.
Paper Details
Effect of Mg,Cu,Cd and Mg/Cd, Cu/Cd on stress biomarkers in durum wheat.
Abstract
This work aims to evaluate the effects of few trace metals (Cd,Cu) and a major element (Mg) and their interactions (Cd/Cu and Cd/Mg) on the growth rate of durum wheat roots (Var. Simeto) and stress biomarkers: glutathione and catalase activity (CAT) in the roots and leaves of durum wheat. A treatment with concentrations (5,20,50μM) of Cu and Mg combined or not to (100 µM) of Cd is applied. The results show an increase growth rate for all Mg concentrations whereas copper has stimulating at low concentrations and inhibiting at high concentrations. As for combinations Mg/Cd and Cu/Cd, inhibit root growth except at [100 µM] of Cd stimulating it during the first 96 hours. However GSH is stimulated at low [Mg/Cd] and increasing concentrations of Cu except the lowest dose where no significant increase is observed. GSH levels are stimulated at low concentrations of Cu/Cd and 100µM of Cd in the roots compared to controls. In addition, increasing concentrations of Mg increase the production of GSH, So that an inhibition of GSH for combination treatment Mg/Cd. should be noted that Cu has no effect on GSH except at (50 /100µM). Meanwhile, the catalase activity is stimulated to the different concentrations of Mg and Mg/Cd in the plants. Unlike increasing Cu concentrations where there is a significant decrease in this activity. Similarly, the combined treatment (Cu/Cd) inhibits catalase activity [ 50/100 µM ] in roots and leaves. In the end, Cd induces catalase activity in leaves and inhibits in the roots.
Asada K, Takahashi M. 1987. Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ, Osmond CJ, Arntzen CJ, Ed. Photo inhibition: topics in Photosynthesis, Elsevier. Amsterdam, 227. http://dx.doi.org/10.1104/pp.106.082040
Brun C, Guénoche A, Jacq B. 2003. Approach of the functional evolution of duplicated genes in Saccharomyces cerevisiae using a new classification method based on protein-protein interaction data. Journal of Structural and Functional Genomics 3, 213 – 224. http://dx.doi.org/10.1023/A1022694824569
Cakmak I, Kirkby EA. 2008. Role of magnesium in carbon partitioning and alleviating photooxidative damage. Plant Physiology 133, 692-704. http://dx.doi.org/10.1111/j.1399-3054.2007.01042.x
Cao X, Ma LQ, Tu C. 2004. Antioxidative response to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.). Environmental Pollution 128, 317- 325. http://dx.doi.org/10.1016/j.envpol.2003.09.018
Chiffoleau J F, Auger D, Chartier E, Michel P, Truquet I, Ficht A, Gonzalez JL, Romana LA. 2001. Spatiotemporal changes in Cadmium contamination in the Seine estuary (France). Estuaries 24, 1029-1040. http://dx.doi.org/10.2307/1353015
Cho UH, Seo NH. 2005. Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Science 168, 113-120. http://dx.doi.org/10.1016/j.plantsci.2004.07.021
Clemens S. 2006. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88, 1707-1719. http://dx.doi.org/10.1016/j.biochi.2006.07.003
Cuypers A, Vangronsveld J, Clijsters H. 2000. Biphasic effect of copper on the ascorbate-glutathione pathway in primary leaves of Phaseolus vulgaris seedlings during the early stages of metal assimilation. Physiologia Plantarum 110, 512-517. http://dx.doi.org/10.1111/j.13993054.2000.1100413.x
DalCorso G, Manara A, Furini A. 2013. An overview of heavy metal challenge in plants: from roots to shoots. Metallomics 5, 1117-1132. http://dx.doi.org/10.1039/c3mt00038a
Djebali W, Chaïbi W, Ghorbel MH. 2002. Croissance, activité peroxydasique et modifications structurales et ultrastructurales induites par le cadmium dans la racine de tomate (Lycopersicon esculentum). Canadian Journal of Botanic 80, 942–953. http://dx.doi.org/10.1139/b02-062
Dos Santos WD, Ferrarese MD, Finger L, Teixeira CAN, Ferrarese O. 2004. Lignification and related enzymes in Glycine max root growth-inhibition by ferulic acid. Journal of Chemical Ecology 30, 1203-1212.
Doustaly F, Combes F, Fievet JB, Berthet S, Hugouvieux V, Bastien O, Aranjuelo I, Leonhardt N, Rivasseau C, Carriere M, Vavasseur A, Renou JP, Vandenbrouck Y, Bourguignon J. 2014. Uranium perturbs signaling and iron uptake response in Arabidopsis thaliana roots. Metallomics 6, 809-821. http://dx.doi.org/10.1039/c4mt00005f
Ducruix C, Junot C, Fievet JB, Villiers F, Ezan E, Bourguignon J. 2006. New insights into the regulation of phytochelatin biosynthesis in A. thaliana cells from metabolite profiling analyses. Biochimie 88, 1733-1742.
Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE. 2004. Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16, 2176-2191. http://dx.doi.org/10.1105/tpc.104.023036
Gallego SM, Benavide MP, Tomaro ML. 1996. Effects of heavy metal ion excess on sunflower leaves: Evidence for involvement of oxidative stress. Plant Science 121, 151-159. http://dx.doi.org/10.1016/S0168-9452(96)04528-1
Ghnaya T, Nouairi I, Slama I, Messedi D, Grignon C, Abdelly C, Ghorbel MH. 2005. Cadmium effects on growth and mineral nutrition of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum. Journal of Plant Physiology 162, 1133-1140. http://dx.doi.org/10.1016/j.jplph.2004.11.011
Gransee A, Fuhrs H. 2013. Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant and soil 368, 5-21. http://dx.doi.org/10.1007/s11104-012-1567-y
Grant CA, Sheppard SC. 2008. Fertilizer impacts on cadmium availability in agricultural soils and crops, human and ecological risk assessment. International Journal of Agriculture and Agri-Food Canada, Brandon Research Centre 14, 210-228. http://dx.doi.org/10.1080/10807030801934895
Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette MLM, Cuine P, Auroy S, Richaud P, Forestier C, Bourguignon J, Renou JP, Vavasseur N, Leonhardt N. 2006. Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88, 1751-1765. http://dx.doi.org/10.1016/j.biochi.2006.04.018
Hopkins WG. 2003. Physiologie végétale. 1st Ed. De Boeck University, 532.
Kabata-Pendias A, Pendias H. 2001. Trace elements in soils and plants. 3rd Ed. Boca Raton, Fla. London : CRC Press, 413.
Kabata Pendias A. 2011. Trace elements in soils and plants. 4th Ed. CRC Press, 548.
Le Lay P, Isaure MP, Sarry JE, Kuhn L, Fayard B, Le Bail JL, Bastien O, Garin J, Roby C, Bourguignon J. 2006. Metabolomic, proteomic and biophysical analyses of Arabidopsis thaliana cells exposed to a caesium stress. Influence of potassium supply. Biochimie 88, 1533-1547. http://dx.doi.org/10.1016/j.biochi.2006.03.013
Lin CC, Chen LM, Liu ZH. 2005. Rapid effect of copper on lignin biosynthesis in soybean roots. Plant Science 168, 855-861. http://dx.doi.org/10.1016/j.plantsci.2004.10.023
Loggini B, Scartazza A, Brugnoli E, Navari-Izzo F. 1999. Antioxidative defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiology 119, 1091-1099. http://www.ncbi.nlm.nih.gov/pubmed/10069848
Marschner H. 2012. Marschner’s mineral nutrition of higher plants, 3rd Ed. London: Academic Press.
McBride MB. 1995. Toxic metal accumulation from agricultural use of sludge – Are usepa regulations protective. Journal of Environmental Quality 24, 5-18. http://dx.doi.org/10.2134/jeq1995.00472425002400010002x
Mikkelsen R. 2010. Soil and fertilizer magnesium. Better Crops 94, 26-28.
Moulis JM, Bourguignon J, Catty P. 2014. Cadmium, the Royal Society of Chemistry. Chapter 23, 695-746.
Nagalakshmi N, Prasad MNV. 2001. Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Science 160, 291-299. http://www.ncbi.nlm.nih.gov/pubmed/11164601
Ouariti O, Gouia H, Ghorbel MH. 1997. Responses of bean and tomato plants to cadmium: Growth, mineral nutrition, and nitrate reduction. Plant Physiology and Biochemistry 35, 347–354. http://www.ncbi.nlm.nih.gov/pubmed/9237398
Ovecka M, Takac T. 2014. Managing heavy metal toxicity stress in plants: Biological and biotechnological tools. Biotechnology Advances 32, 73-86. http://dx.doi.org/10.1016/j.biotechadv.2013.11.011
Paschke MW, Redente EF. 2002. Copper toxicity thresholds for important restoration grass species of the western United States. Environmental Toxicology and Chemistry 21, 2692-2697. http://www.ncbi.nlm.nih.gov/pubmed/12463566
Rengel Z. 1999. Heavy Metals as Essential Nutrients. In: Prasad M. N. V. Hagemayer J. Eds. Heavy metal stress in plants From molecules to ecosystems. Springer-Verlag. Berlin, 231-251.
Sarry JE, Kuhn L, Ducruix C, Lafaye A, Junot C, Hugouvieux V, Jourdain A, Bastien O, Fievet JB, Vailhen D, Amekraz B, Moulin C, Ezan E, Garin J, Bourguignon J. 2006. The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics 6, 2180-2198. http://dx.doi.org/10.1002/pmic.200500543
Sbartai H, Rouabhi R, Sbartai I, Berrebbah H, Djebar MR. 2008. Induction of anti-oxidative enzymes by cadmium stress in tomato (Lycopersicon esculentum). African Journal of Plant Science 2, 72-76.
Sbartai H, Djebar MR, Sbartai I, Berrabbah 2012. Bioaccumulation of cadmium and zinc in tomato (Lycopersicon esculentum L.). Comptes Rendus Biologies 335, 585-593. http://dx.doi.org/10.1016/j.crvi.2012.08.001
Souguir D, Goupil P, Ferjani E, Ledoigt G. 2009. Copper genotoxicity on Vicia faba and Pisum sativum root tips. Study and management of soil 16, 339-348.
Torres MA, Barros MP, Campos SC, Pinto E, Rajamanis S, Sayre RT, Colepicolo P. 2008. Biochemical Biomarkers in algae and marine pollution. Review Ecotoxicology and Environnement Safety 71, 1-15. http://dx.doi.org/10.1016/j.ecoenv.2008.05.009
Verbruggen N, Hermans C, Schat H. 2009. Mechanisms to cope with arsenic or cadmium excess in plants. Current Opinion in Plant Biology 12, 364-372. http://dx.doi.org/10.1016/j.pbi.2009.05.001
Villiers F, Ducruix C, Hugouvieux V, Jarno N, Ezan E, Garin J, Junot C, Bourguignon J. 2011. Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches. Proteomics 11, 1650-1663. http://dx.doi.org/10.1002/pmic.201000645
Weckbecker G, Cory JG. 1988. Ribonucletidereductase activity and growth 07 glutathione depleted mouse Leukenaia L. 1210 cells in vitro. Cancer letters 40, 257-264. http://www.ncbi.nlm.nih.gov/pubmed/3289734
White PJ, Broadley MR. 2009. Biofortification of crops with seven mineral elements often lacking in human diets iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist 182, 49–84. http://dx.doi.org/10.1111/j.1469-8137.2008.02738.x
Yanai J, Zhao FJ, McGrath SP, Kosaki T.2006. Effect of soil characteristics on Cd uptake by the hyperaccumulator Thlaspi caerulescens. Environmental Pollution 139, 167-175. http://dx.doi.org/10.1016/j.envpol.2005.03.013
Yruela I. 2009. Copper in plants: acquisition, transport and interactions. Functional Plant Biology 36, 409-430. http://dx.doi.org/10.1071/FP08288
Zhou WB, Qiu BS. 2005. Effects of cadmium hyperaccumulation on physiological characteristics of Sedum alfrediiHance (Crassulaceae). Plant Science 169, 737-745. http://dx.doi.org/10.1016/j.plantsci.2005.05.030
Zhu JK, Meinzer FC. 1999. Efficiency of C-4 photosynthesis in Atriplex lentiformis under salinity stress. Australian Journal of Plant Physiology 26, 79-86.
Zorrig W, Rouached A, Shahzad Z, Abdelly C, Davidian JC, Berthomieu P. 2010. Identification of three relationships linking cadmium accumulation to cadmium tolerance and zinc and citrate accumulation in lettuce. Journal of Plant Physiology 167, 1239-1247. http://dx.doi.org/10.1016/j.jplph.2010.04.012
N. N. Azizi, M. R. Djebar, H. Sbartai (2016), Effect of Mg,Cu,Cd and Mg/Cd, Cu/Cd on stress biomarkers in durum wheat.; IJB, V9, N4, October, P102-113
https://innspub.net/effect-of-mgcucd-and-mg-cd-cu-cd-on-stress-biomarkers-in-durum-wheat/
Copyright © 2016
By Authors and International
Network for Natural Sciences
(INNSPUB) https://innspub.net
This article is published under the terms of the
Creative Commons Attribution License 4.0