Effect of pH and calcium salt on rheological properties of sodium alginate -methyl cellulose mixtures

Paper Details

Research Paper 01/12/2013
Views (790)
current_issue_feature_image
publication_file

Effect of pH and calcium salt on rheological properties of sodium alginate -methyl cellulose mixtures

Fatemeh Mehmandoost, Mohammad Hojjatoleslamy, Javad keramat, Asma Behzadniya, Narges Shahbazpour
Int. J. Biosci. 3(12), 105-114, December 2013.
Copyright Statement: Copyright 2013; The Author(s).
License: CC BY-NC 4.0

Abstract

In this study, rheological properties of two gums, sodium alginate (Alg) and methylcellulose (MC) in 5 concentration levels were studied. Total concentration of gums in solution was 0.1% (w/v) and different gums ratios (100% (Alg), 75% (Alg) and 25% MC, 50% (Alg) and 50% (MC), 25% (Alg) and 75% (MC), and 100% (MC)) were prepared. Measurements were carried out at 25˚C. Consequently the synergistic effect of these gums in different pH values (3, 5 and 7) in 0.1%(w/v) concentration was investigated. Obtained data indicated that dispersions which contain these polymers showed shear thickening behavior as mention in the text.

Bochek AM, Zabivalova NM, Lavrent,ev VK, Lebedeva MF, Sukhanova TE, Petropavlovskii GA. 2001. Formation of Physical Thermally Reversible Gells in Solutions of Methyl Cellulose in Water and Dimethylacetamide and Properties of Films There of , Macromolecular Chemistry and Polymeric Materials (74), 1-10. http://dx.doi.org/10.1023/A:1013774800778

De Kerchove AJ, Elimelech M. 2007. Formation of polysaccharide gel layers in the presence of Ca2+ and K+ ions: measurements and mechanisms. Biomacromolecules 8(1), 113-121.

García–Ochoa F, Santos VE, Casas JA, Gomez E. 2000. Xanthan gum: production, recovery, and properties. Biotechnology Advances 18, 549-579. http://dx.doi.org/10.1021/bm060670i

Liu L. 2003. Sol-gel transition in aqueous alginate solutions induced by cupric cations observed with viscoelasticity, Polymer Journal 35(10), 804-809. http://dx.doi.org/10.1016/S0032-3861(02)00771-1

Liu XX. 2003. Rheology characterization of Sol-gel transition in aqueos alginate solution s induced by cupric cations observed with viscoelasticity, Polymer Journal 35 (10), 804-809. http://dx.doi.org/10.1016/S0032-3861(02)00771

Macosko CW. 1994. Rheology, principles, measurements, and applications. Wiley-VCH, Inc. New York-USA.

Marcotte M, Taherian AT, Trigui M, Ramaswamy HS. 2001. Evaluation of rheological properties of selected salt enriched food hydrocolloids. Food Engineering 48, 157-167. http://dx.doi.org/10.1016/S0260-8774(00)00153-9

Martínez-Padilla LP, López-Araiza F, Tecante A. 2004. Steady and oscillatory shear behavior of fluid gels formed by binary mixtures of xanthan and gellan. Food hydrocolloids 18, 471-481. http://dx.doi.org/10.1016/j.foodhyd.2003.07.002

Matsumoto T, Mashiko K. 1990, Biopolymers 29-411.

Rao MA, Anantheswaran RC. 1982. Rheology of fluid in food processing. Food Technology 36, 116-126.

Rao MA, Kenny JF. 1975. Flow properties of selected food gums. Canadian Institue of Food science and Technology 8, 142-148. http://dx.doi.org/10.1016/S0315-5463(75)73766-5

Rosenthal AJ. 1999. Food texture, Measurement and Perception. Aspen Publishers, Inc.

Skjåk-Bræk  G, Grasdalen H, SmidsrØd O. 1989. Carbohydras Polymer 10, 31.

Walkenström P, Kidman S, Hermansson A, Resmusen PB, Hoegh L. 2003. Microstructure and rheological behavior of xanthan/pectin mixed gels. Food Hydrocolloids 17, 593-603. http://dx.doi.org/10.1016/j.jfoodeng.2004.12.005

Wang ZY. 1994. Sol-Gel transition of alginate solution by the addition of various divalent-cations- a rheological study. Biopolymers 34 (6), 737-46. http://dx.doi.org/10.1002/bip.360340606

Wells   LA,    Sheardoe\wn   H.    2007.    Extended release of high pI proteins from alginate microspheres via a novel encapsulation technique. Eur J Pharm Biopharm 65, 329-35. http://dx.doi.org/10.1016/j.ejpb.2006.10.018

Related Articles

Muscle type and meat quality of local chickens according to preslaughter transport conditions and sex in Benin

Assouan Gabriel Bonou*, Finagnon Josée Bernice Houéssionon, Kocou Aimé Edenakpo, Serge Gbênagnon Ahounou, Chakirath Folakè Arikè Salifou, Issaka Abdou Karim Youssao, Int. J. Biosci. 27(6), 241-250, December 2025.

Effects of micronutrients and timing of application on the agronomic and yield characteristics of cucumber (Cucumis sativus)

Princess Anne C. Lagcao, Marissa C. Hitalia*, Int. J. Biosci. 27(6), 214-240, December 2025.

Response of different soybean varieties to phosphorus fertilizer microdosing and rhizobium inoculation in the sub-humid zone of Northern Benin

Pierre G. Tovihoudji*, Kamarou-Dine Seydou, Lionel Zadji, Sissou Zakari, Valerien A. Zinsou, Int. J. Biosci. 27(6), 201-213, December 2025.

On-farm validation of black soldier fly larvae meal as a sustainable replacement for shrimp meal in rainbow trout diets in the mid hills of Nepal

Ishori Singh Mahato, Krishna Paudel*, Sunita Chand, Anshuka Bhattarai, Int. J. Biosci. 27(6), 189-200, December 2025.

Insect fauna associated with Cucumis sativus (Cucurbitales: Cucurbitaceae) in Parakou, A cotton-growing area of central Benin

Lionel Zadji*, Mohamed Yaya, Roland Bocco, Prudencia M. Tovignahoua, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, Hugues Baimey, Leonard Afouda, Int. J. Biosci. 27(6), 175-188, December 2025.

First record of two hymenopteran species, Brachymeria excarinata Gahan (Chalcididae) and Pteromalus sp. (Pteromalidae), as hyperparasitoids of Diadegma insulare in Senegal

Babacar Labou*, Etienne Tendeng, Mamadou Diatte, El hadji Sérigne Sylla, Karamoko Diarra, Int. J. Biosci. 27(6), 167-174, December 2025.

Hepatoprotective and antinociceptive effects of terpinolene in streptozotocin-induced diabetic peripheral neuropathic rats

Ravishankar Sarumathi, Muthukumaran Preethi, Chandrasekaran Sankaranarayanan*, Int. J. Biosci. 27(6), 156-166, December 2025.