Effect of soil acidity on some soybean varieties

Paper Details

Research Paper 01/04/2015
Views (638)
current_issue_feature_image
publication_file

Effect of soil acidity on some soybean varieties

Diana Sofia Hanafiah, Alida Lubis, Asmarlaili
J. Biodiv. & Environ. Sci. 6(4), 43-48, April 2015.
Copyright Statement: Copyright 2015; The Author(s).
License: CC BY-NC 4.0

Abstract

This study aims to determine the mechanism of adaptation and morphophysiology character of soybean genotypes to soil acidity levels. Research using randomized block design with four replications, the first factor consists of soybean varieties: Tanggamus varieties, Detam 2, Anjasmoro and Detam 1, while the second factor is the media’s treatment consisted of medium acid soils and limed soil. The results showed that the low level acidity of planting medium will affect the growth and development of plants. There are different mechanisms of adaptation to acidity on soybean varieties. Avoidance mechanism is indicated by an increase in pH around the roots on Tanggamus varieties, Detam2, Anjasmoro and Detam1. Tolerant mechanism is indicated by the maturation age and high production on Tanggamus varieties

Arsyad MD, Adie MM, Kuswantoro H. 2007. The Assembly of Specific Agroecology Soybean Varieties. In: Sumarno, Suyamto, A Widjono, Herman, H Kasim (eds). Soybeans: Production Engineering and Development. Bogor: Center for Food Crops Research and Development.

Bertham RYH, Nusantara AD. 2011. Mechanism of adaptation new soybean genotypes in getting nutrient phosphorus of soil mineral acid. Agronomy Journal of Indonesia 39 (1), 24-30

Bolan NS, Naidu R, Mahimairaja S, Baskaran S. 1994. Influence of low molecular-weight organic acids on the solubilization of phosphates. Biology and Fertiity of Soils. 18, 311- 319.

Ekawaty D. 2007. Tolerant Studies of Soybean Varieties [Glycine max (L.) Merrill] on the content of AlCl 3 through in Vitro Tecnique. Faculty of Agriculture, North Sumatra.

Fitter AH, Hay RKM. 1981. Environmental Physiology of Plants. Academic Press, Inc.

Gandanegara S, Hendratno, Yuliasti, Sumarna N. 2007. Effect of lime and rhizobium isolates to performance soybean mutant line on acid soil. National Atomic Energy Agency.

Hakim N, Nyakpa M, Lubis AM, Nugroho SG, Diha A, Fong GB, Bailey HH. 1986. Fundamentals of Soil Science. IPB-Press, Bogor.

Hanafiah DS, Trikoesoemaningtyas, Yahya S, Wirnas D. 2012. Differential mechanism of adaptation to drought in soybean varieties (Glycine max. L. Merr.). Prosiding of International Seminar and Launching Varieties “Agriculture Adaptation in the Tropics”, Bogor Agricultural University and SEAMEO-BIOTROP.

Hanum C, Mugnisjah WQ, Yahya S, Sopandie D, Idris K, Sahar A. 2007. The Growth of soybean root at aluminium toxicity, drought stress, and double stress aluminium toxicity and drought stress. Agritrop, 26 (1), 13 – 18.

Hocking PJ. 2001. Organic acids exuded from roots in phosphorus uptake and aluminium tolerance of plants in acid soils. Advances in Agronomy Journal. 74,63-97.

Mulyani A. 2006. Potential acid dry land for agricultural development. News of Agricultural Research and Development 28 (2), 1- 5.

Prasetiyono J and Tasliah, 2003. Approach strategy for plant breeding biotechnology tolerant aluminum toxicity. Journal of Agricultural Sciences Vol.10 (1), 64-67

Rachman A, Subiksa MGI, Wahyunto. 2007. Expanding the Area of Soybean Plants to Sub Optimal Land. Center for Food Crops Research and Development. Bogor

Sopandie D. 2006. Perspectives physiology in the development of food crops in marginal lands. Scientific Oration Professor of Plant Physiology, IPB, Bogor.

Related Articles

Design and development of a sustainable chocolate de-bubbling machine to reduce food waste and support biodiversity-friendly cacao processing

John Adrian B. Bangoy, Michelle P. Soriano, J. Biodiv. & Environ. Sci. 27(4), 41-47, October 2025.

Ecological restoration outcomes in Rwanda’s Rugezi wetland: Biodiversity indices and food web recovery

Concorde Kubwimana, Jean Claude Shimirwa, Pancras Ndokoye, J. Biodiv. & Environ. Sci. 27(4), 32-40, October 2025.

Noise pollution in the urban environment and its impact on human health: A review

Israa Radhi Khudhair, Bushra Hameed Rasheed, Rana Ihssan Hamad, J. Biodiv. & Environ. Sci. 27(4), 28-31, October 2025.

Prevalence of Anaplasma marginale and Ehrlichia ruminantium in wild grasscutter’ specific ticks in southern Côte d’Ivoire

Zahouli Faustin Zouh Bi, Alassane Toure, Yatanan Casimir Ble, Yahaya Karamoko, J. Biodiv. & Environ. Sci. 27(4), 21-27, October 2025.

Impact of social media campaigns on farmers awareness of environmental conservation practices

Preeti Raina, Rahul Kumar Darji, Rahul Mittal, J. Biodiv. & Environ. Sci. 27(4), 1-8, October 2025.

Phytochemical analysis and antioxidant activity of ethanolic leaves extract of Psidium guajava

G. Saranya, K. Durgadevi, V. Ramamurthy, J. Biodiv. & Environ. Sci. 27(3), 57-63, September 2025.

Physicochemical and phytochemical analysis of Glycyrrhiza glabra root extract

J. Ramalakshmi, P. Vinodhiniand, V. Ramamurthy, J. Biodiv. & Environ. Sci. 27(3), 50-56, September 2025.