Effect of sunshine on the evolution of morphological and physicochemical parameters of preharvest mangoes (Mangifera indica L.)

Paper Details

Research Paper 01/10/2021
Views (412) Download (32)
current_issue_feature_image
publication_file

Effect of sunshine on the evolution of morphological and physicochemical parameters of preharvest mangoes (Mangifera indica L.)

Kouakou Kouassi Léopold, Koffi Yao Bertin, Yao Kouakou François Konan, Abeda Zagadou Hermane, N'da Adopo Achille, Kouakou Tanoh Hilaire
Int. J. Biosci.19( 4), 95-107, October 2021.
Certificate: IJB 2021 [Generate Certificate]

Abstract

To reduce post-harvest losses due to an uncontrolled harvest date, the effects of sunshine on the ripening of mangoes on trees were studied in the Kent variety intended for export from Côte d’Ivoire. On trees, some mangoes exposed to direct daily sunlight (DDS) and others shaded by the leaves, therefore subject to indirect daily sunlight (IDS) were monitored. Mangoes growth and development were accessed through morphological (weight, length, circumference and volume) and physicochemical (firmness, pulp color, total sugars, reducing sugars, flavonoids and tannins) parameters. Furthermore, temperature induced by daily sunlight was recorded until harvest. The obtained results showed that, except for pulp firmness and coloration, indirect sun exposure (IDS) increased more rapidly morphological parameters than direct sun exposure (DDS). For example, 78 days after fruit set; IDS increased faster (0.46 kg/week) mangoes weight than DDS (0.37 kg/week). However, mangoes physicochemical parameters changed faster under DDS than under IDS. Investigation of daily temperature effect on mango parameters evolution revealed that low temperatures (28.72; 30.22; 30.53°C) promoted morphological growth while high temperatures (31.55; 31.56; 32.55°C) rapidly evolved mango internal physicochemical parameters. Consequently, sun direct exposition (DDS) reduce mangoes harvest time than indirect exposition i.e. shadiness under leaves (IDS). Sunshine can now be harnessed by dropping branches in orchards after the mango trees have fruited. This is so that the maximum number of mangoes are exposed to the sun on the tree. Thus, quality of the harvested mangoes is improved and mangoes will be competitive in the international market.

VIEWS 37

Bainbridge Z, Tomlins K, Willings K, Westby A. 1996. Methods for assessing quality characteristics of non-grain starch staple. Part 4 advanced methods. National Resources Institute. University of Greenwich 1, 43-79.

Beggs C, Wellman E. 1985. Analysis of light controlled anthocyanins formation in coleoptile of Zea maize L.: the role of UV-B, blue, red and far-red light. Photochemistry and Photobiology 41, 481- 486.

Belem A, Tapsoba F, Ouattara lTS, Zongo C, Savadogpo A. 2017. Étude de la qualité organoleptique de trois variétés de mangues Amélie, Lippens, Brooks séchées au cours du stockage par technique de brunissement enzymatique des peroxydases (POD) et des polyphénoloxydases (PPO). Université d’Ouagadougou 1, Burkina-Faso, p 39.

Bergqvist J, Dokoozlian N, Ebisuda N. 2001. Sunlight exposure and temperature effects on berry growth and composition of Cabernet Sauvignon and Grenache in the central San Joaquin Valley of California. American Journal of Enology and Viticulture 52, 1-7.

Bernfeld P. 1955.  Amylase β and α (assay method), in methods in enzymology I. Colowick and Kaplan. Edition.  Academy press. New York, USA. 1, 149-158.

Dambreville A. 2012. Croissance et développement du manguier (Mangifera indica L.) in natura : approche expérimentale et modélisation de l’influence d’un facteur exogène, la température, et de facteurs endogènes architecturaux. Thèse. Université Montpellier 2, France, p 188.

Delroise A. 2003. Caractérisation de la qualité et étude du potentiel de maturation de la mangue (Mangifera indica L.) en fonction de son stade de récolte, p 37.

Djioua T. 2010. Amélioration de la conservation des mangues 4ème gamme par application de traitements thermiques et utilisation d’une conservation sous atmosphère modifiée. Thèse de Doctorat. Université d’Avignon et des Pays de Vaucluse, France, p 169.

Dubois M, Gilles K, Hamilton J, Rebers P, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28(3), 350-356.

FAOSTAT. 2001. Market situation Commodity Committee second session. Available: http://www.fao.org/docrep/Meeting/004/Y1982F.htmAccessed 5/6/2021

Ferguson, IB, Snelgar WP, Lay YM, Watkins CB, Bowen JH. 1998. Expression of heat shock protein genes in apple fruit in the field. Australian Journal of Plant Physiology 25, 155-163.

FIRCA. 2011. Répertoire de technologies et de procédés de transformation de la mangue et de l’ananas, p  120.

Gabrielle F. 2001. Étude de la composition biochimique de la mangue (Mangifera Indica L.) en fonction de son stade de maturité, p 30.

Ganry J. 1978. Calcul des sommes de températures moyennes journalières à partir du minimum et du maximum journalier de températures sous climat tropical et équatorial. Fruit 3(4), 221-236.

Gautier H, Rocci A, Buret M, Grasselly D, Dumas Y, Causse M. 2005. Effect of photoselective filters on the physical and chemical traits of vine-ripened tomato fruits. Canadian Journal of Plant Science 85, 439-446.

Godoy HR, Rodriguez-Amaya DB. 1989. Carotenoid composition of commercial mangoes from Brazil. Lebensmittel-Wissenschaft und Technologie 22, 100-103.

Gomez L. 1997. Postharvest Physiology. The mango:  botany, production and uses. (Litz RE) Homestead, CAB International: 425-445.

Hala N, Coulibaly F. 2007. Étude diagnostique de l’état sanitaire du verger manguier et acquis de la recherche agronomique sur la lutte intégrée contre les mouches des fruits et la cochenille farineuse du manguier en Côte d’Ivoire. Rapport Final, Convention CNRA / FIRCA Mangue, p 68.

Johnson G, Sharp J, Milne D, Oosthuyse S. 1997. Postharvest technology and quarantine treatments, in: Litz R.E. (Ed.). The mango botany production and uses. CAB International. Wallingford, UK. 447–507.

Kalra SK, Tandon DK. 1983. Ripening behaviour of « Dashehari » mango in relation to harvest period. Scientia Horticulturae 19, 263-269.

Larkindale J, Knight MR. 2002. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscissic acid, ethylene and salicylic acid. Plant Physiology 128, 682-695.

Martinez HJ, Siddhuraju P, Francis G, Davila OG, Becker K. 2006. Chemical composition, toxic/anti-metabolic constituents, and effect of different treatments on their levels, in four provenances of Jatropha curcas L. From Mexico. Food Chemistry 96(1), 80-89.

Mazza CA, Boccalandro HE, Giordano CV, Battista D, Scopel A, Ballaré CL. 2000. Functional significance and induction by solar radiation of ultraviolet-absorbing sunscreens in field-grown soybean crops. Plant Physiology 122, 117-125.

Meda A, Lamien CE, Romito M, Millogo J, Nacoulma OG. 2005. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chemistry 91, 571-577.

Mieu B. 2017. Côte d’Ivoire: The government wants to restructure the strategic sector of mango. Available: http://www.Jeuneafrique.com/mag/386974/economie/cotedivoire-gouvernement-veut-restructurerfiliere-strategique-de-mangueAccessed 2/5/2021

Monselise SP, Goren R. 1987. Preharvest growing conditions and postharvest behavior of subtropical and temperate-zone fruits. HortScience 22, 1185-1189.

Pantin F, Simonneau T, Rolland G, Dauzat M. Muller B. 2011. Control of leaf expansion: A developmental switch from metabolics to hydraulics. Plant Physiology 156, 803-815.

Paull RE, Gross K, Qiu YX. 1999. Changes in papaya cell walls during fruit ripening. Postharvest Biology and Technology 16, 79-89.

Rey JY, Diallo TM, Vannière H, Didier C, Kéita S, Sangaré M. 2004. La mangue en Afrique de l’Ouest francophone, Synthèse historique. Fruits 59, 121–129.

Singleton VL, Orthofer R, Lamuela-Raventos RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymology 299, 152-178.

Solovchenko A, Schmitz-Eiberger M. 2003. Significance of skin flavonoids for UV-B protection in apple fruit. Journal of Experimental Botany 54 (389), 1977-1984.

Subramanyam H, Krishnamurthy S, Parpia HAB. 1975. Physiology and biochemistry of mango fruit. Advances in Food Research 21, 223-305.

Thibault N. 2014.  Analyse expérimentale et modélisation de l’hétérogénéité de la qualité et de la maturité des mangues. Thèse de Doctorat de l’Université d’Avignon et des pays de Vaucluse, France, p 163-170.

Touré S. 2012. Étude nationale mangue. La Côte d’Ivoire et le centre du commerce International, Ed. ECOWAS, p  27.

Valente M, Dornier M, Piombo G, Grotte M. 2004. Relation entre la fermeté de la mangue fraîche et la teneur en amidon de la pulpe. Fruit 59, 399-410.

Wang H, Arakawa O, Motomura Y. 2000. Influence of maturity and bagging on the relationship between anthocyanin accumulation and phenylalanine ammonia-lyase (PAL) activity in Jonathan apples. Postharvest Biology and Technology 19, 123-128.

Woolf AB, Bowen JH, Ferguson IB. 1999.  Preharvest exposure to the sun influences postharvest responses on ‘Hass’ avocado fruit. Postharvest Biology and Technology 15, 143-153.

Yao NB. 2013. Conservation du fruit du papayer (Carica papaya L. var. solo) par le contrôle du stade de maturité à la récolte et quelques activités biochimiques. Thèse de l’Université Nangui Abrogoua, Côte d’Ivoire, p 120.

Yapo SE. 2013. Propagation et régénération in vitro de l’ananas [Ananas comosus var. comosus (L. Merrill) Coppens et Leal] cultivé en Côte d’Ivoire et étude physicochimique des fruits issus des vitrocultures. Thèse de de l’Université Nangui Abrogoua, Côte d’Ivoire 18-19.