Effectiveness of plant growth promoting bacteria isolated from phyllosphere and rhizosphere microbial consortium of rice growth

Paper Details

Research Paper 01/06/2015
Views (612)
current_issue_feature_image
publication_file

Effectiveness of plant growth promoting bacteria isolated from phyllosphere and rhizosphere microbial consortium of rice growth

Aris Aksarah Pas, Didy Sopandie, Trikoesoemaningtyas, Dwi Andreas Santosa
J. Biodiv. & Environ. Sci. 6(6), 292-299, June 2015.
Copyright Statement: Copyright 2015; The Author(s).
License: CC BY-NC 4.0

Abstract

A group of microbes living together and interacting both with each other and with the host plant is known as a microbial consortium. Previous studies have tested the combination of microbial consortium phyllosphere Fm48 with rhizosphere R15, effectively improved the growth and production of rice. The role of microbial consortium is supported by the role of microbes that constitute the consortium. Therefore, the effectiveness of the member of microbial consortium on plant growth need to be evaluated when applied in the form of a single culture. The microbial consortium of phyllosphere Fm48 has four members, namely the isolate of Fm48(1)(95.5% 16S rRNA homology with Serratia sp. Strain SE-3), Fm4(2)(96.4% 16S rRNA homology with Enterobacter sp. Strain KDP6), Fm48(3)(96.2% 16S rRNA homology with Enterobacter sp. Strain MS5) and Fm48(4)(96.6% 16S rRNA homology with Klebsiella oxytoca. Strain LRC162). The microbial consortium of rhizosphere R15 has four members, namely the isolate of R15(1)(96.1% 16S rRNA homology with Stenotrophomonas sp. Strain U1370-101126-SW193), R15(2)(92.3% 16S rRNA homology with Stenotrophomonas acidaminiphila. Strain SZH19), R15(3)(86.0% 16S rRNA homology with Bacillus sp. Strain SC59) and R15(4)(95.9% 16S rRNA homology with Stenotrophomonas sp. Strain BCc6). The isolate of microbial consortium of phyllosphere Fm48 and rhizosphere R15 having roles to fix N2, to dissolve inorganic P and as a consortium produces plant growth hormones. The consortium of phyllosphere Fm48 improved rice growth significantly compared with their single culture, in contrast, there is not any different between rhizosphere R15 and their single culture on its positive impacts on rice growth.

Agustin Nuriyani Maira L, Emalinda O. 2010. Rhizobakteria penghasil fitohormon IAA pada rhizosfir tumbuhan semak karamunting, titonia dan tanaman pangan. Jurnal Solum 7(1), 49-60.

Akbari Gh A, Arab SM, Alikhani HA, Allahdadi I, Arzanesh MH. 2007. Isolation and selection of indigenous Azospirillium spp. And IAA of superior strain on wheat roots. World journal of Agricultural Science 3(4), 523-529.

Atashpaz S, Khani S, Barzegari A, Barar J, Vahed SZ, Azarbaijani R, Omidi Y. 2010. A robust universal method for extraction of genomic DNA from bacterial species. Microbiology  79(4), 538-542. http://dx.doi.org/10.1134/S0026261710040168.

Egamberdieva D. 2008. Plant growth promoting properties of rhizobacteria isolated from wheat and pea grown in loamy sand soil. Turkish Journal Biology 32(1), 9-15.

Gusmaini. 2005. Pemanfaatan konsorsium mikrob daun berasal dari tumbuhan ekosistem air hitam untuk memacu pertumbuhan vegetatif dan generatif padi. PhD thesis, Bogor Agricultural University, Bogor, 44-55.

Gusmaini Azis SA, Munif A, Sopandie D, Bermawie N. 2013. Potency of endophytic bacteria to increase the growth, biomass and andrographolide yields of the bitter king. Jurnal Penelitian Tanaman Industri 19(4), 167-177.

Hidayati U. 2014. Potensi bakteri endofit asal tanaman karet sebagai pemacu pertumbuhan bibit batang bawah tanaman karet (Hevea brasiliensis Mull.Arg.). PhD thesis, Bogor Agricultural University, Bogor 12-13.

Lindquist JA. 1975. Bacteriological and ecological observation on the northem pitcher plant, Sarracenia pupurea L. University of Wisconsin-Madison Press, 36-40.

Matjik AA, Sumertajaya IM. 2006. Perancangan percobaan dengan aplikasi SAS dan MINITAB. Bogor : IPB Press, 275p.

Pati BR. 1992. Effect of spraying nitrogen fixing phyllospheric bacterial isolates on rice plants. Zentralblatt fur Mikrobiologie 147(7), 441-446. http://dx.doi.org/10.1016/S0232-4393(11)80312-4.

Rao NSS. 1995. Soil microorganism and plant growth. 3rd. Edition. Science Publishers, Inc., New Hampshire, 100-121.

Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N. 2010. The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leave. Environmental Microbiology 12(11), 2885-2893, http://dx.doi.org/10.1111/j.1462-2920.2010.02258.x.

Reisberg EE, Hildebrandt U, Riederer M, Hentschel U. 2013. Distinct phyllosphere bacterial communities on arabidopsis wax mutant leaves. PLoS ONE 8(11), 1-12. http://dx.doi.org/10.1371/journal.pone.0078613.

Santosa DA. 2001. Rapid extraction and purification of environmental DNA for moleculer cloning application and moleculer diversity studies. Molecular Biotechnologi 17(1), 59-64. http://dx.doi.org/10.1385/MB:17:1:59.

Saraswati R, Husen E, Simanungkalit RDM. 2007. Metode analisis biologi tanah. balai besar litbang sumberdaya pertanian. Badan penelitian dan pengembangan pertanian. Jakarta : Departemen Pertanian, 23-55.

Sharma A, Sahgal M, Johri BN. 2003. Microbial communication in the rhizosphere: Operation of quorum sensing. Current Science 85(8), 1164-1172.

Sunatmo TI. 2009. Mikrobiologi Esensial 1. Jakarta : Ardy Agency, 30-61.

Sutedjo MM, Kartasapoetra AG, Sastroatmodjo  RDS.  1996.  Mikrobiologi  tanah. Edisi kedua Jakarta: Rineka Cipta, 1-68.

Unyayar S, Topcuoglu SF, Unyayar A. 1996. A modified method for extraction and identification of indole-3-acetic acid (IAA), gibberellic acid (GA3), abscicid acid (ABA), and zeatin produced by Phanerochaete and Chrysosporium ME446. Bulgarian Journal of Plant Physiology 22(3-4), 105-110.

Vorholt JA. 2012. Microbial life in the phyllosphere. Nature Reviews Microbiology 10(12), 828-840. http://dx.doi.org/10.1038/nrmicro2910.

Related Articles

Antioxidant and anti-inflammatory activity of Pleurotus citrinopileatus Singer and Pleurotus sajor-caju (Fr.) Singer

P. Maheswari, P. Madhanraj, V. Ambikapathy, P. Prakash, A. Panneerselvam, J. Biodiv. & Environ. Sci. 27(2), 90-96, August 2025.

Mangrove abundance, diversity, and productivity in effluent-rich estuarine portion of Butuanon River, Mandaue City, Cebu

John Michael B. Genterolizo, Miguelito A. Ruelan, Laarlyn N. Abalos, Kathleen Kay M. Buendia, J. Biodiv. & Environ. Sci. 27(2), 77-89, August 2025.

Cytogenetic and pathological investigations in maize × teosinte hybrids: Chromosome behaviour, spore identification, and inheritance of maydis leaf blight resistance

Krishan Pal, Ravi Kishan Soni, Devraj, Rohit Kumar Tiwari, Ram Avtar, J. Biodiv. & Environ. Sci. 27(2), 70-76, August 2025.

Conservation and trade dynamics of non-timber forest products in local markets in south western Cameroon

Kato Samuel Namuene, Mojoko Fiona Mbella, Godswill Ntsomboh-Ntsefong, Eunice Waki, Hudjicarel Kiekeh, J. Biodiv. & Environ. Sci. 27(2), 58-69, August 2025.

Overemphasis on blue carbon leads to biodiversity loss: A case study on subsidence coastal wetlands in southwest Taiwan

Yih-Tsong Ueng, Feng-Jiau Lin, Ya-Wen Hsiao, Perng-Sheng Chen, Hsiao-Yun Chang, J. Biodiv. & Environ. Sci. 27(2), 46-57, August 2025.

An assessment of the current scenario of biodiversity in Ghana in the context of climate change

Patrick Aaniamenga Bowan, Francis Tuuli Gamuo Junior, J. Biodiv. & Environ. Sci. 27(2), 35-45, August 2025.

Entomofaunal diversity in cowpea [Vigna unguiculata (L.) Walp.] cultivation systems within the cotton-growing zone of central Benin

Lionel Zadji, Roland Bocco, Mohamed Yaya, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, J. Biodiv. & Environ. Sci. 27(2), 21-34, August 2025.

Biogenic fabrication of biochar-functionalized iron oxide nanoparticles using Miscanthus sinensis for oxytetracycline removal and toxicological assessment

Meenakshi Sundaram Sharmila, Gurusamy, Annadurai, J. Biodiv. & Environ. Sci. 27(2), 10-20, August 2025.